

Implementing a subset of DFDL

A basic parser for a subset of the DFDL specification and related

libraries

Yi ZHU

MSc in High Performance Computing
The University of Edinburgh

Year of Presentation: 2005

 i

Authorship declaration

I, Yi Zhu, confirm that this dissertation and the work presented in it are my own

achievement.

1. Where I have consulted the published work of others this is always clearly

attributed;

2. Where I have quoted from the work of others the source is always given. With

the exception of such quotations this dissertation is entirely my own work;

3. I have acknowledged all main sources of help;

4. If my research follows on from previous work or is part of a larger collaborative

research project I have made clear exactly what was done by others and what I

have contributed myself;

5. I have read and understand the penalties associated with plagiarism.

Signed:

Date: August 26, 2005

Matriculation no: 0457001

 ii

Acknowledgements

Many people helped in the development of my project during the last three months,

and I am grateful to them all. Neil Chue Hong and Tom Sugden, who are my

supervisors, gave me huge help within the range of possibilities. Neil directed the

high-level orientation and guidance for the project and gave me a lot of valuable

suggestions on the dissertation. Tom, helped me with my detailed design, coding and

English presentation, and he was very kind and patient. Moreover, they introduced

me to Martin Westhead, who was the author of “GGF DFDL Primer”. Martin

explained some of the vague concepts of DFDL for me and also gave me some

significant suggestions. Besides, the DFDL working group was also quite helpful,

especially Susan Malaika and Kristoffer H. Rose who helped me to understand the

DFDL at the first stage and provided me with some original ideas of the project. For

instance, Susan suggested that the JPEG data format would be an interesting topic to

be described, and Kristoffer provided me with several detailed examples of how to

describe data files using DFDL.

 iii

Abstract

DFDL is a kind of XML-based data format description language, which can be used

to describe the structure of any data file for data interchange in the Grid environment.

Since DFDL is still under discussion, I chose to implement a subset of the DFDL

specification and determined how to describe the JPEG data format based on it.

After that, I designed a library, including a generic DFDL description parser and a

data file parser, which can be used to convert any data file to a XML representation

based on the corresponding DFDL description. The whole project follows formal

software engineering principles, from system analysis and design to the

implementation. During the coding, I utilised unit testing to ensure that all core

modules worked correctly; and then I tested the entire system using a simple binary

data file, a simple text file and a JPEG image with their corresponding DFDL

descriptions.

This dissertation is organised in a similar structure. I explain the basic concept of the

DFDL and the JPEG data format at first; and then discuss how I analysed the entire

project, including requirement analysis and risk analysis etc., followed by the system

design and implementation as well as the testing.

 iv

Table of Contents

Authorship declaration .. i

Acknowledgements ..ii

Abstract ...iii

Table of Contents .. iv

Chapter 1 Introduction ... 1

1.1 Background ... 1

1.2 DFDL .. 2

1.3 XML & XML schema ... 4

1.4 JPEG.. 5

1.5 Project overview.. 7

Chapter 2 DFDL .. 9

2.1 Architecture... 9

2.2 Simple examples ... 11

2.2.1 Describing the binary data file ... 11

2.2.2 Describing the text file ... 14

2.3 Comparison with other file-oriented data formats 16

Chapter 3 JPEG data format .. 19

3.1 Digital Image concepts.. 19

3.2 JPEG file layout .. 20

Chapter 4 Analysis... 25

4.1 Requirements analysis... 25

4.1.1 Functional requirements... 25

4.1.2 Non-functional requirements.. 27

4.1.3 High-level generalisation ... 28

4.2 Development model & process ... 29

 v

4.3 Work plan .. 31

4.4 Development model in practice .. 31

Chapter 5 Design ... 35

5.1 Functionality design.. 35

5.2 System design ... 35

5.2.1 DFDLLibrary ... 36

5.2.2 Beans .. 37

5.2.3 Parser.. 39

5.2.4 BeanBuilder ... 41

5.2.5 System design overview... 42

Chapter 6 Implementation highlights .. 43

6.1 DFDL Schema... 43

6.1.1 The simplified definition style ... 43

6.1.2 Overall syntax of DFDL Schema ... 45

6.1.3 Basic DFDL directives supported .. 46

6.1.4 Nibble elements.. 49

6.1.5 Variable length segments ... 50

6.2 The DFDL schema parser ... 53

6.2.1 Overall idea .. 53

6.2.2 SAX vs. DOM.. 54

6.2.3 Processing global DFDL attributes .. 55

6.2.4 Processing simple type definitions... 56

6.2.5 Processing complex type definitions.. 58

6.2.6 Process elements .. 59

6.3 The data file parser.. 61

6.3.1 Recursion algorithm... 61

6.3.2 File wrapper ... 65

6.3.3 Convertor ... 66

 vi

6.4 Testing ... 67

6.4.1 Unit testing ... 67

6.4.2 System testing .. 68

6.5 Summary ... 70

Chapter 7 Conclusion... 71

Reference.. 73

Appendix Ⅰ Describing a simple binary data file... 75

Appendix Ⅱ Describing a simple text file... 79

Appendix Ⅲ Describing a JPEG image... 83

Appendix Ⅳ Java API Document .. 97

 1

Chapter 1 Introduction

1.1 Background

From the early 1970s when computers were first linked by networks, people have

been thinking about the idea of simultaneously making use of different

computational resources and harnessing unused CPU cycles. In the 1990s,

distributed computing scaled to a global level as the Internet and high-performance

physical interconnection technology matured, and then a brand new concept, the

Grid, occurred. [1]

The Grid [2] suggests a computing framework similar to the electric power grid,

which provides power for consumers all over the nation, even around the world,

without the requirement to know where the electricity comes from and how it is

generated. Similarly, the Grid intends to provide users with distributed

computational power, and they do not need to know where their jobs are running and

what kind of machine they are using.

From about 2000, Web Services emerged from the business world in an attempt to

establish a framework for machine-to-machine communication using XML-based

technologies as the basis for language neutral and machine independent

communications. At roughly the same time, the concept of Web Services was

introduced into the new generation of the Grid, the Open Grid Services Architecture

(OGSA), which defined the Grid architecture in terms of services: heterogeneous

resources on the Grid are accessed via XML Web Services using the Web Services

Resource Framework (WS-RF).

Although different Grid applications have different characteristics, there are some

 2

challenges that are common to the Grid. Firstly, Security Challenges, which concern

problems like “Is the user who they say they are?” and “Is the user allowed to do

what they are requesting?” Secondly, Scheduling Challenges, which consider issues

such as how to find the appropriate resources and how tasks are directed to that

resources. Last but not least, Data Challenges: heterogeneous data resources stored

in different formats are distributed across the Grid, and it is hard to make efficient

and transparent use of these data sets.

However, there are key efforts underway to tackle these challenges and define

standards that would allow the easy pooling and sharing of all computing resources,

including cycles, storage, and data in a way that can promote mass adoption of grid

computing [1]. For example, the OGSA-DAI project [3] is the leading effort for the

Data Challenges. It develops middleware, which is a part of the Data Management

component in the Globus Toolkit 4, to allow data resources, currently mainly

database systems, to be accessed and integrated into a Grid environment.

For using OGSA-DAI, a mechanism is needed to specify different data formats in a

universal manner, and DFDL is such a means. As DFDL is still under research and

discussion, it is very helpful to try to implement a subset of it, including both parsers

and high-level applications, which is also the aim of this project.

1.2 DFDL

DFDL is short for Data Format Description Language, which is an XML-based

language used for describing the structure of binary and character encoded files and

data streams so that their format and structure can be exposed [4]. It can be used to

represent heterogeneous data resources in the Grid environment, currently mainly

database systems and flat binary files. This effort specifically does not aim to create

a generic data representation language. Rather, DFDL endeavors to describe existing

 3

formats in an actionable manner that makes the data in its current format accessible

through generic mechanisms.

The DFDL description would sit in a logically separate file from the data itself. The

description would provide a hierarchical description that would structure and

semantically label the underlying bits stream. It would specify how bits are to be

interpreted as parts of low-level data types, such as integers, floats, strings; how

low-level types are assembled into scientifically relevant forms such as arrays; how

meaning is assigned to these forms through association with variable names and

metadata such as units; and how arrays and the overall structure of the binary file are

parameterized based on array dimensions, flags specifying optional file components,

etc. Any DFDL described file can then be accessed, queried and integrated,

regardless of its data format.

Figure 1 below illustrates a situation when DFDL may be useful. There are some

legacy data about protein folding stored in a flat binary data file in China,

meanwhile in UK there is another data set about protein folding, which is a text file.

A biologist in US is going to synthesize new information form both these two data

resources. How can the user simultaneously deal with these two heterogeneous data

formats? Here DFDL is a good choice. Along with each data resource, there is a

DFDL description describing the data structure, and the user can then use a parser to

understand the data format that DFDL described and some libraries to do integrated

queries.

 4

Figure 1 A simple scenario for DFDL

When using DFDL, the format of data in a data stream is described by means of a

DFDL Schema, which is an XML Schema containing only a subset of the constructs

available in full XML Schema Description Language, and augmented with special

DFDL annotations that carry the information about the data format or representation.

(see Chapter 2 for more details)

1.3 XML & XML schema

As mentioned before, DFDL is based on XML, and can be thought of as a

combination of XML schema and DFDL annotations.

XML (Extensible Markup Language) is a standard for creating markup languages

which describe the structure of data. It is a metalanguage, or in other words, a

language for describing and defining languages. It provides an essential mechanism

for transferring data between services in an application and platform neutral format.

However, the drawback of using it is the large overhead that XML tagging imposes,

especially when the dataset is huge. Furthermore, there are large amounts of

valuable legacy datasets which are not stored in XML format, having existed prior to

XML. The DFDL working group at the Global Grid Forum (GGF) therefore

Legacy data about
protein folding stored

in a flat binary data file

Data about protein
folding stored
 in a text file

DFDL

description

Parser & libraries

DFDL

description

 5

intended to take advantages of various characteristics of XML and define a generic

description language for data.

XML has some features that are valuable for the DFDL. For instance, XML allows

authors to define their own tags, providing a mechanism for describing data in an

environment where a human and an application both can determine what the data is

and what it is representing. As DFDL is based on XML, it is both human-legible and

computer-legible. On the other hand, XML is an extensible and self-descriptive

language, and theoretically, it is a Turing-Complete language which could generate

any type of languages without limitation. Therefore, in theory, DFDL can be used to

define any type of data format with the help of XML schema, although there are still

some problems that have not been solved.

The purpose of an XML Schema is to define the legal building blocks of an XML

document. It defines elements and attributes that can appear in a document, the data

types for them and the order of them, as well as their default or fixed values. The

DFDL user describes the abstract data model using an XSD, and the XSD-based

model is then augmented by the so-called DFDL annotations specifying how the

data model is represented in an underlying text or binary form. Hence, data that is

described by DFDL can be thought of as if it were XML data even though the

representation is a much smaller and more efficient one. This concept is generally

called "tagless XML". It is anticipated that an XSD approach will make it possible to

construct DFDL APIs similar to DOM and SAX and to simplify exporting of DFDL

described data to XML documents [5].

1.4 JPEG

In practice, DFDL can be used to describe databases, including both relational

databases (Oracle, MS SQL Server, MySQL, etc.) and XML databases (Xindice,

 6

eXist, etc.), and all kinds of flat binary data files, even text documents and pictures.

However, in the context of my project, I intend to use a data format which has a

clear structure and is meaningful to be described. After considering pros and cons of

several possible data formats, I decided to use JPEG as the candidate data format to

be described using DFDL for analysis and testing during my project.

JPEG is an international standard for colour image compression, defining a group of

compression algorithms and many coding alternatives for continuous-tone, still

images. However, it does not define the meaning or format of the components that

comprise the image. Attributes like the color space and pixel aspect ratio must be

specified out-of-band with respect to the JPEG bits stream. The JPEG File

Interchange Format (JFIF) is a defacto standard that provides this extra information

using an application marker segment (APP0, APP1 etc.) [6]. It enables JPEG bit

streams to be exchanged between a variety of platforms and applications [7].

Therefore, usually when people refer to “JPEG”, they actually mean JPEG JFIF. In

my project, I will focus on the JPEG JFIF data format defined in ISO DIS 10918-1

[8] and JPEG File Interchange Format Specification. Furthermore, in this article, I

also use “JPEG” to stand for JPEG JFIF.

I chose JPEG as the underlying data format because, firstly, it is a very popular data

format and used in almost every field ranging from peoples’ daily lives to scientific

research: there exist vivid pictures of harmonious families, as well as huge images of

galaxies. These pictures are distributed all over the world and are quite likely to be

shared and transferred over the Grid. Secondly, JPEG files have clear structures that

can be identified by different markers. However, here clear structures do not mean

simple or less meaningful. In opposite, different segments nest with each other and

form a very complex multiple layers format, and meanwhile these structures

contains some particular attributes, all of which are valuable topics to explore

 7

whether DFDL is powerful enough to handle them. For instance, the occurrence and

the length of a segment may be determined by the contents of one or more other

segments, requiring some calculation and even conditional distinction; and

sometimes JPEG uses “nibble” type data items which would be a big challenge for

DFDL to express (see Chapter 3 for more details). Thirdly, JPEG files include not

only the data layout information, but also some meaningful contents, such as colours

and compression algorithms, which are interesting topics to be described.

What’s more, this format was also suggested by the GGF DFDL Working Group

because there are still few real-world examples of DFDL implementation and

describing JPEG would be a brand new experiment; at the same time, examining

whether DFDL can cope with those “dependence” problems of JEPG may result in

some other useful comments. So the result of my project will be valuable for the

entire DFDL project.

1.5 Project overview

In a nutshell, the aim of this project is to determine how to describe the JPEG data

format using a subset of DFDL specification, and subsequently design and

implement a generic parser for this subset. The parser should be capable of

understanding not only the DFDL description of JPEG but also other DFDL

descriptions based on the same subset that has been focused on. Finally, some

related libraries, which produce an XML representation of the original data file

utilising this parser. (see Figure 2)

 8

Figure 2 High-level design for the entire project

In addition, for increasing the chances of project success and ensuring good usability

and efficient data transfer through the system, I need to follow effective software

engineering principles and produce a good design.

The goal of the project is to utilise a subset of DFDL to solve a real-world problem –

describing the JPEG data format – and to see whether DFDL is capable of doing that,

including discussing any shortage or limitations; and then to explore potential

difficulties in parsing DFDL schemas, by actually implementing a generic parser.

JPEG File 1 JPEG File n ……

JPEG DFDL schema

DFDL schema parser

Data file parser

Conforms

XML representation of the
original data file

 9

Chapter 2 DFDL

2.1 Architecture

DFDL is a descriptive language, describing the data representation in a separate file.

When an application wants to access the data, it is via parsers that read a data file or

stream of raw data along with the associated DFDL description. The parser makes

various data formats understandable to the application. It may be implemented as a

low-level library and some other high-level libraries may be implemented on top of

it.

When utilising parsers to parse DFDL descriptions, the whole process can be

conceptualised in terms of 3 primary layers (see Figure 3 [5]). The central layer is

the Abstract Data Model. In this layer, we focus on the primitive data structure such

as integers, floating point numbers and strings, as well as some compound structures

like vectors and arrays. Here we do not need to care about how many bits an integer

or a double precision number occupies: we think of them as abstract entities. Their

physical representations on the storage or in memory are hidden at this layer.

The lower layer is the mapping between abstract data structures and their physical

representations, which defines, for instance, whether an integer is made up of 32 bits

or 64 bits and whether it is represented as a flat data stream or a string. This

determines how many bits are read and if transformations are required when

extracting the figure. Similarly, we can define how individual elements in an array

are separated from each other: by a space or a dot, etc. DFDL encapsulates the

semantics of these basic definitions and transformations in an extensible set of

primitive mappings that can be composed in sophisticated ways [5]. After defining

 10

the mappings in the lower layer, we associate abstract data models with their

particular physical representations, and this is why conceptual data types in the

central layer can be dealt with independently.

Figure 3 The architecture of DFDL

The upper layer, which can be thought of as a set of APIs, defines how an

application written with a certain programming language accesses the actual data

described by the abstract model along with the mapping. These APIs may have some

additional sophisticated functions that enable instantiating values on demand and

avoiding reading unnecessary bits, which are not part of the requested value, as well

as caching.

All in all, applications written in a variety of programming languages use the upper

level APIs to access the required data described by DFDL via central level abstract

data models and lower level mappings. Sometimes the data is stored in a flat binary

file: the first 4 bytes might definitely be the first integer; and sometimes the data is

stored in a text file: the integer is represented by its ASCII value, so a transformation

is required before we know what the value is. However, all of these are transparent

 Primitive type

 Compound structure

Fortran Java C/C++

Binary file Data streamText file

API

Abstract Data Model

Mapping

 11

for the high level applications. They only need to say, “I want the integer value”.

2.2 Simple examples

Thinking of the simple scenario mentioned in section 1.2, there are two

heterogeneous data resources: a binary data file and a text file, and now we are

going to demonstrate the working mechanism of DFDL by describing them. For a

clearer understanding, we assume that both the binary file and the text file contain

two consecutive values, an integer “1” and a float “1.0”. However, in the binary file,

the byte sequence is

In the text file, the byte sequence is

2.2.1 Describing the binary data file

According to the DFDL architecture, we need an abstract data type and a mapping

which specifies a restriction on the raw data, determining how to access it. After

defining a mapping between an ordinary XSD data type and its physical

representation, we call it a mapped type.

Thus, in a similar process to the one described in [5], the first task is to define the

mappings:

Notice that we firstly mapped the raw data into bytes; and then we defined that an

<dfdl:definitions>

<dfdl:mapping name=”dfdl:data-bytes” rangeType=”dfdl:data”

domainType=”dfdl:bytes.unbounded” direction=”bidirectional”/>

<dfdl:mapping name=”dfdl:bytes-int” rangeType=”dfdl:bytes.4”

domainType=”xs:int” direction=”bidirectional”/>

<dfdl:mapping name=”dfdl:bytes-float” rangeType=”dfdl:bytes.4”

domainType=”xs:float” direction=”bidirectional”/>

</dfdl:definitions>

00 00 00 01 3F 80 00 00

31 2C 31 2E 30

 12

integer contains 4 bytes and so does a float. The attribute “name” specifies the name

of the mapping; the “rangeType” and the “domainType” define the target data type

and source data type respectively; and the “direction” attribute means whether the

mapping is in single direction or bi-direction. With these mappings, next we need to

define the mapped types which are the abstract types along with the mapping

restrictions that they must follow.

Now we have mappings and mapped types which can be thought of as bridges

between the abstract data models and the mappings. Therefore we are ready to

describe the binary data file using DFDL:

<xs:simpleType name=”binaryInt”>

<xs:restriction base=”xs:int”>

<xs:annotation>

<xs:appinfo>

<dfdl:compositeMapping>

<dfdl:mapping name=”data-bytes”/>

<dfdl:mapping name=”bytes-int”/>

</dfdl:compositeMapping>

</xs:appinfo>

</xs:annotation>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name=”binaryFloat”>

<xs:restriction base=”xs:float”>

<xs:annotation>

<xs:appinfo>

<dfdl:compositeMapping>

<dfdl:mapping name=”data-bytes”/>

<dfdl:mapping name=”bytes-float”/>

</dfdl:compositeMapping>

</xs:appinfo>

</xs:annotation>

</xs:restriction>

</xs:simpleType>

 13

Just as we said in Chapter 1, it is obvious that the entire DFDL description is made

up of some XML Schema elements, such as simpleType, complexType and sequence,

and some DFDL annotations which define mappings and supply attributes. For

instance, the byteOrder attribute specifies an important characteristic for the

mapping: the values conform to the BigEndian coding rule which means the most

significant bytes are stored first.

Furthermore, we can see that the abstract data model and mapping are separated

from each other. As in the central layer we only deal with abstract data types like

integer and float, the binary file is defined as a sequence of an XSD integer and an

XSD float. For associating abstract types with mappings, the “use” tag, which means

“uses the mapped type”, is introduced. It places some restrictions on the ordinary

xs:int and xs:float, implying that every time we meet a xs:int or a xs:float, it should

be interpreted as a binaryInt or a binaryFloat. The advantage of separating abstract

<xs:annotation>

 <xs:appinfo>

 <dfdl:definitions>

 <!—- global attributes -->

 <dfdl:dataFormat byteOrder=”bigEndian”/>

 <!-- mapped type assignments -->

 <use type=”dfdl:binaryInt”/>

 <use type=”dfdl:binaryFloat”/>

 </dfdl:definitions>

 </xs:appinfo>

</xs:annotation>

<xs:element name=”simpleExampleOfBinaryFile”>

 <xs:complexType>

 <xs:sequence>

 <xs:element name="x" type="xs:int"/>

 <xs:element name="y" type="xs:float"/>

 </xs:sequence>

</xs:complexType>

</xs:element>

 14

models from their mappings is that different mappings can be easily applied to the

same abstract data model, and all low-level modifications of mappings are

transparent to the high-level applications: even if the integer contains 8 bytes rather

than previous 4 bytes, it is still a xs:int for the application.

According to this DFDL description, the original binary data file can be interpreted

and then represented in the XML format as:

2.2.2 Describing the text file

According to our assumption, the text file also consecutively contains an integer

value and a float value, but stored in ASCII format instead of binary one. Again,

beginning with the definition of mappings:

The idea is similar, but this time the mapping is via a string rather than bytes.

Subsequently, the mapped types textInt and textFloat are defined in the same way.

<dfdl:definitions>

<dfdl:mapping name=”dfdl:data-string” rangeType=”dfdl:data”

domainType=”xs:string” direction=”bidirectional”/>

<dfdl:mapping name=”dfdl:string-int” rangeType=”dfdl:string”

domainType=”xs:int” direction=”bidirectional”/>

<dfdl:mapping name=”dfdl:string-float” rangeType=”dfdl:string”

domainType=”xs:float” direction=”bidirectional”/>

</dfdl:definitions>

<simpleExampleOfBinaryFile>

<x>00 00 00 01</x>

<y>3F 80 00 00</y>

<simpleExampleOfBinaryFile>

 15

Finally, the text file can be described as:

<xs:simpleType name=”textInt”>

 <xs:restriction base=”xs:int”>

<!-- using <xs:restriction base=”xs:float”> for textFloat -->

 <xs:annotation>

 <xs:appinfo>

 <dfdl:compositeMapping>

 <dfdl:mapping name=”data-string”/>

 <dfdl:mapping name=”string-int”/>

<!-- using <dfdl:mapping name=”string-float”>

for textFloat -->

 </dfdl:compositeMapping>

 </xs:appinfo>

 </xs:annotation>

 </xs:restriction>

</xs:simpleType>

<xs:annotation>

<xs:appinfo>

<dfdl:definitions>

<!-- attributes -->

<dfdl:dataFormat characterSet=”UTF-8”/>

<dfdl:dataFormat decimalSeparator=”.”/>

<dfdl:dataFormat fieldSeparator=”,”/>

<!-- mapped type assignments -->

<use type=”dfdl:textInt”/>

<use type=”dfdl:textFloat”/>

</dfdl:definitions>

</xs:appinfo>

</xs:annotation>

<xs:element name=”simpleExampleOfTextFile”>

<xs:complexType>

<xs:sequence>

<xs:element name="x" type="xs:int"/>

<xs:element name="y" type="xs:float"/>

</xs:sequence>

</xs:complexType>

</xs:element>

 16

Just as we discussed before, whether the values are physically represented as ASCII

or binary bits is transparent for the high-level applications. Since the abstract data

models for the text file are still an integer and a float, the sequence definition is the

same. However, as the mappings are different, different mapped types are applied.

In addition, this time the attribute annotations are more complex and also more

interesting. The first attribute tells us that the file uses the UTF-8 coding form for

the ASCII characters; the second attribute defines that the float number uses “.” as

its decimal separator; and the final attribute specifies that individual strings are

separated from each other via “,”.

According to this DFDL description, the original text file can be interpreted and then

represented in the XML format as:

2.3 Comparison with other file-oriented data formats

Besides DFDL, there are some other file-oriented data formats that can be used for

data interchange in the future.

The HDF5, which is a completely new Hierarchical Data Format, consists of a data

format specification and a supporting library implementation [9]. It defines a

physical file format for particularly storing scientific data and generates

self-describing binary data files containing complete information on their structure.

However, DFDL aims to describe any type of data. Furthermore, HDF5 is

prescriptive in that it is a format of data, and any HDF5 data files and applications

<simpleExampleOfBinaryFile>

<x>1</x>

<y>1.0</y>

<simpleExampleOfBinaryFile>

 17

must conform to this format. In contrast with it, DFDL is descriptive in that it is not

a particular data format, but a way to define any data format. For instance, to

generate a scientific data file using HDF5, it must be constructed based on the HDF5

primary objects: datasets and groups (see [9] for more details); while by using

DFDL, the data file itself can be produced in any data format based on the

requirement, and then a separate DFDL description file is written to describe this

format.

Similar to DFDL, BinX is another means of describing the layout of binary data files

(see [10] for more details). Both of them are descriptive and XML-based, sitting in a

separate file from the original data. However, they are different in some small details,

such as:

 BinX descriptions are real XML files and DFDL descriptions are XML Schema

in substance, although they are all based on XML.

 One BinX description is associated with a particular data file or a group of data

files that have the identical structure, while a DFDL description can be used to

describe a set of related files whose structures are similar but not the same.

 The contents of every element and every property of BinX descriptions must be

definite, however, XPath expressions can be used as variables for properties in

the DFDL.

 18

 19

Chapter 3 JPEG data format

3.1 Digital Image concepts

Nowadays, JPEG, the acronym for “Joint Photographic Experts Group”, is a widely

accepted international standard for both gray scaled and colourful images. It can be

used almost anywhere: on the Internet, in scientific research and in peoples’ daily

life. By definition, JPEG is concerned primarily with images that have two spatial

dimensions, contain gray scale or colour information, and possess no temporal

dependence [11], which is why we say that it is a standard for still images.

Usually, when we talk about JPEG, we mean “digital images” composed of a series

of binary numbers that are converted from a sequence of sample points along each

scan line at regular intervals. There are three very important concepts for digital

images: sampling, quantisation and encoding.

Sampling is the first step of the process of converting continuous analog image

information into discrete digital representations, by measuring the value of analog

data at regular intervals; then splitting the continuous range of values into discrete

levels and assigning sampling values to corresponding levels, which is called

quantisation; finally representing those discrete levels by a particular set of binary

numbers, which is known as encoding.

For instance, consider a one-dimensional analog image signal, shown in Figure 4.

When we measured it at regular intervals, we were sampling. To make the fixed

number of bits sufficient to represent the signal, we must discretize the decimal

values, and in our example, divided the whole domain into 8 levels which can be

represented by 3 binary bits. Subsequently, we used the simplest encoding to

 20

represent them. Finally, this continuous signal can be converted into digital

representation as: 011 101 011 100 101 110 101 010 010 100.

Figure 4 Sampling, quantisation and encoding illustration

There are three important parameters: precision, resolution and aspect ratio.

 The precision specifies how many bits are used for representing one sample

point. The higher the precision is, the more levels of intensity can be

represented, so the more details can be included [12]. In the previous example,

the precision is 3 bits/sample.

 The interval between samples determines the resolution of the sampled signal.

The smaller the sampling interval, the higher the resolution, and the more

accurately we represent the continuous signal [12]. The resolution of our

example is 10.

 The final parameter, aspect ratio, is particularly for 2-D images. It describes the

shape of the sample, and this is determined by the relationship between the

physical size of the image and the rectangular grid of samples [12].

3.2 JPEG file layout

One of the reasons why I chose JPEG as the data format that I want to describe

using DFDL is that it has clear structures. JPEG files contain two classes of

000
001
010
011
100
101
110
111

 21

segments: entropy-coded segments which contain the entropy-coded image data, and

marker segments which contain header information, tables, and other information

required to interpret and decode the compressed image data [13]. As the “JPEG” in

this project actually refers to JPEG JFIF as we mentioned in section 1.4, there are

also some marker segments containing information like aspect ratio and orientation

of the image, which are not needed to decompress the data, but are needed by many

applications. Marker segments always begin with a “marker”, and all marker

segments and entropy-coded segments are followed by another “marker”, so the

entire data structure is clearly labeled. Figure 5 demonstrates the typical structure of

a JPEG file.

Figure 5 Structure of JPEG files

A marker is a unique two-byte code beginning with one-byte 0xFF and a non-zero

one-byte marker code that specifies what the segment is. The SOI and EOI are the

start and end of the image; APP0 is the JFIF segment marker: this segment provides

attributes like the colour space and pixel aspect ratio. The markers for them are

0xFFD8, 0xFFD9 and 0xFFE0 respectively. In JPEG files, an image is usually

represented in one or more frames, and SOFn (0xFFC0) is the start of frames. Each

frame is further broken down into one or more scans, each of which appears as an

SOI Start of image
 APP0 JFIF segment marker
DQT Quantisation table
definition
DRI Restart interval

 SOFn Start of frame
 DHT Huffman table definition
 SOS Start of scan
 Entropy-coded segment, RST0
 … etc. …
 Entropy-coded segment, RSTn
 DHT Huffman table definition
 SOS Start of scan
 … etc. …
EOI End of image

 22

entropy-coded bit stream, and SOS (0xFFDA) is the start of scans. Each frame and

scan is preceded with a marker segment containing optional definitions for instance

Quantisation tables[1] (DQT, 0xFFDB) and Huffman coding tables[2] (DHT, 0xFFC4)

[6].

In addition to the entire file structure, some markers have their own structures.

Amongst them, there are two very important markers, APP0 and SOFn,, which are

also of interest to my projects. The parameters of the APP0 marker and SOFn marker

are listed in Figure 6 and Figure 7 [8] [14]. As we can see, each marker has a well

defined parameters list, and each parameter is allocated fixed number of bytes,

which is crucial for the DFDL description. Subsequently, the parser will know the

exact meaning of each bits block and the high-level library will extract the useful

information, for instance, the width and height of the image.

[1] The set of 64 quantization values used to quantize the DCT coefficients.
[2] The set of variable length codes required in a Huffman encoder and Huffman decoder.

 23

Parameter Size Description

Marker Identifier 2 bytes 0xFF, 0xE0

Length 2 bytes This must be >= 16

File identifier mark 5 bytes Using (0x4A, 0x46, 0x49, 0x46, 0x00) to
identify JFIF

Major revision number 1 byte This should be 1, otherwise error

Minor revision number 1 byte This should be 0..2

Units for x/y densities 1 byte

0: no units, x/y-density specifies the aspect ratio
instead;
1: x/y-density is dots/inch;
2: x/y-density is dots/cm

X-density 2 bytes It should be not equal 0

Y-density 2 bytes It should be not equal 0

Thumbnail width 1 byte The width of thumbnail

Thumbnail height 1 byte The height of thumbnail

Bytes to be read n bytes n = width * height * 3 bytes

Figure 6 Parameters of APP0 marker

Parameter Size Description

Marker Identifier 2 bytes 0xFF, 0xC0

Length 2 bytes
8 bytes + number of components * 3 bytes,
excluding the 2 bytes allocated to the marker
identifier

Sample precision 1 bytes Bits/sample, usually 8

Number of lines (Image
height) 2 bytes This must be > 0

Number of samples per
line (Image width) 2 bytes This must be > 0

Number of components 1 bytes Usually 1 = grey scaled, 3 = colourful

Specification for Each
Component 3 bytes

Each component has 3 bytes, containing
component id (1 byte), sampling factors (1
byte), and quantisation table number (1 byte)

Figure 7 Parameters of frame header

 24

 25

Chapter 4 Analysis

4.1 Requirements analysis

Requirements analysis is of great importance to any software development project.

Without keeping the right requirements in mind, your project will definitely fail no

matter how wonderful the design, coding and other activities are, as it will not

produce the same thing as your customer expected. Furthermore, without a

predetermined, detailed and legible requirements description, it would be extremely

hard to track the entire project and to know whether your result would meet all your

customer’s expectations.

Although there is no tangible customer as part of my project, we can consider the

DFDL working group as the potential customer who wants me to perform some

exploration and experimental implementation based on a subset of DFDL and JPEG

data format. Therefore, I need to know exactly what the DFDL-WG expected. So I

discussed with experts of the DFDL-WG all over the world via E-mail and

international phone call, in order to find out what they are really interested in.

Usually the requirements analysis covers two categories of requirements: functional

requirements, which specify what activities the software must be capable of

performing, and non-functional requirements, which describe how the software

performs these activities. The outcome of requirements analysis is often a prioritised

checklist of detailed requirements.

4.1.1 Functional requirements

Through discussion with the DFDL-WG, we found the most important functional

 26

requirement to be describing the JPEG format using DFDL by defining different

markers segments. The second one is implementing a generic parser that can

understand any DFDL description. Subsequently, a parser for parsing the original

data file according to the information gained from the DFDL parser is to be

developed. Finally, we need to implement a library, which produce an XML

representation of the original data file utilising the two parsers. However, as we used

the “Design to Schedule” development model (see next section for more details), the

time remaining is a key factor for later requirements. The final checklist of

functional requirements is shown in Figure 8. Each requirement is further broken

down into a series of details with identifiers, so that we can examine each specific

sub-requirement and refer to it in later chapters if required.

Priority Requirement Details

1. Define the SOI, EOI markers;

2. Define the APP0 marker segment;

3. Define the APP1 marker segment;

4. Define the SOF0 marker segment;

5. Define the SOS marker segment;

6. Define the DHT marker segment;

1 Describe the JPEG data format using
DFDL

7. Define the DQT marker segment;

8. Interpret different global attributes;

9. Interpret simple types which is based on
XML schema primitive types;

10. Interpret complex types which comprise a
series of simple and complex elements;

11. Process simple type elements;

2 Develop a generic parser for parsing any
DFDL description

12. Process complex type elements;

13. Process different attributes;

14. Process simple type data items; 3

Develop a data file parser for parsing
the data file according to the
information gained from the previous
DFDL parser; 15. Process complex type data items;

4 Develop a library for representing the
original data file in XML format

16. Represent the original data file in XML
format;

Figure 8 The prioritised checklist of functional requirements

 27

4.1.2 Non-functional requirements

With functional requirements, we specify what the software should do, while with

non-functional requirements, we want to describe how it does it. As listed in Figure

9, the most important requirement is “effectiveness”, which means that the parser

must be able to effectively perform right actions on a wide range of data files

besides JPEG images, otherwise we cannot say that the software is successful.

Another important requirement is “portability”, because DFDL is part of the data

management technologies for the Grid, which mainly focuses on the integration of

heterogeneous data resources on different platforms. The other three requirements

concern the quality of the software, but sometimes these are difficult to examine and

address.

Priority Requirement Details

1. Working correctly with JPEG images;

2. Working correctly with binary data files; 1 Effectiveness

3. Working correctly with text files;

4. Being able to work on Windows platform;

5. Being able to work on Sun Solaris platform; 2 Portability

6. Being able to work on Redhat Fedora Linux platform;

3 Efficiency 7. Reasonable performance on different kinds of data files, and
files with different size;

8. Working correctly with simple files (Less than 10 MB);
3 Scalability

9. Working correctly with big files (Around 500 MB);

3 Usability 10. Being able to be easily used by clients.

Figure 9 The prioritised checklist of non-functional requirements

After finishing the requirements analysis and producing the prioritised checklists,

what we must do is to follow these requirements and mark each one after achieving

it. They exist for the purpose of helping us understand what we need to achieve, and

 28

to highlight our developing direction.

4.1.3 High-level generalisation

The Use Case Diagram is a powerful tool to generalise the high-level requirements

of a system and demonstrate the interaction between an actor, who is the image user

in our case, and the system. Through performing this interaction, the actor can

accomplish certain goals. It is a concise and explicit means of capturing and

documenting a high-level view of what the system does, so I use it to specify and

visualise the requirements from a more general perspective.

From this point of view, the purpose of the system at the highest-level is to help the

image user convert the original JPEG image file into an XML representation, which

is portable and understandable to almost all platforms, as shown in Figure 10.

Figure 10 Highest-level of the Use Case Diagram

For showing more details, we draw the second-level Use Case Diagram: breaking

down the highest-level requirement into two sequential sub-requirements, see Figure

11.

Figure 11 Second-level of the Use Case Diagram

Representing the original
JPEG file in XML format

Parsing the DFDL
description

Parsing the original
JPEG file

Representing the result
in XML format

 29

4.2 Development model & process

As we know, there are many different development models, such as waterfall,

evolutionary delivery, and spiral model, which are suitable for different kinds of

problems. Amongst them I chose to use “Design to Schedule” because:

 Firstly, it is an iterative method, which would give me a tangible result at an

early stage, show me an instant view where the project has arrived, and make

myself confident that it is progressing in the right direction.

 Secondly, this project is only a subset of the DFDL project, without complicated

requirements and stages.

 Thirdly, we have a hard deadline, but the requirements are relatively flexible as

this project is somewhat heuristic and tentative: it does not mean that there are

no specific requirements, but we can decide what to implement; if there is

enough time, I can add some more features to implement; if no time is available,

we can stop.

In detail, the first step of Design to Schedule, which is also the most important one

and will determine the success of the model, is to order features in terms of

importance. The result of ordered features is similar to the prioritised functional

requirements shown in Figure 8 and Figure 9. Secondly, the most critical features

are implemented in the earliest releases, with less important features implemented if

there is time and stopping when time runs out.

In addition to the development model, the development process is also of great

significance for the success of the project. It is an implementation of sensible

activities to keep a project on track, for instance, revision control, testing and risk

management. Revision control is simply archival and retrieval of specific working

 30

material, or in other words, maintaining a history of source files and records of

changes over time in a retrievable way. We will discuss the testing in detail in

section 6.4, so we only talk about risk management here.

Risk management is the area of process which identifies and handles project risks,

including risk assessment and risk control. After risk assessment, we will get a list

containing the description of the risk, the chance of it occurring, its impact on the

schedule and more important, the priority extrapolated from the previous two factors,

as well as a reasonably proposed solution. The risk list of our project is shown in

Figure 12, and the unit for “impact” is how many “weeks” the risk will affect the

entire project, i.e. if we assume the first risk, the expected overrun would be six

weeks.

Risk Chance of
occurring

Impact
(weeks) Priority Solution

Not familiar with
DFDL which is
absolutely new

90% 6 5.4
Discussing with DFDL working
group using mailing list or
telephone;

Inexperienced in the
formal software

engineering
principles

70% 5 3.5 Communicating with my
supervisors as often as possible.

Maybe the existing
DFDL specification

does not support
some features which

we want such as
variable length bits

block

50% 6 3

Discussing with DFDL working
group to find a suitable solution,
or choosing other features to
implement

Do not have enough
mathematics

background which is
required by fully
understanding the

JPEG

70% 2 1.4
Asking my friends who are
competent in mathematics or
signal processing for help.

Figure 12 Prioritised list of risks and corresponding solutions

 31

However, risk assessment is not our final objective, instead we intend to draw

support from it and keep better control of these risks. The more accurately risks are

identified before hand, the earlier we will solve them, and accordingly the bigger

chance for success we will gain.

4.3 Work plan

The Gantt chart for the entire project is shown in Figure 13. I divided my project

into 14 tasks and 3 phases. The first phase is from the end of May to July, I will

understand, analyse and design the entire project, as well as updating the dissertation

and finishing the interim report. The phase 2 is from July to early August,

implementing the parser and the libraries. The phase 3 is testing phase. I will

complete it 10 days before the deadline and then checking the dissertation. I did not

think that leaving the dissertation to the last couple of weeks was a good idea, so I

began the dissertation in June, and continued to update it several times during the 3

months, leaving enough time for checking at the end.

4.4 Development model in practice

The entire project followed the “Design to Schedule” development model very well.

I wrote the DFDL description for the JPEG data format, which has the highest

priority, in the first stage, and then implemented the generic DFDL parser and the

data file parser one after the other, and finally developed a library method for

representing the original data file in XML format. This development model provided

me with tangible results at the earliest stages, which made me confident that the

project was going well.

The project also benefited from the “risk management” development process. At the

first stage, there was a misconception of generating DFDL descriptions on a

one-to-one basis with different JPEG files. However, since we had already identified

 32

the risk that we were not very familiar with DFDL, we discussed with the DFDL

working group and changed our work plan in time. The original work plan put more

emphasis on the details of each JPEG image, but the new plan concentrated on using

and parsing the DFDL itself. As we corrected our decision in the earliest stage, it did

not seriously affect the entire project.

Figure 13 Gantt chart for the entire project

 33

In addition, the timetable for dissertation deliveries is demonstrated in Figure 14.

Time Deliverables

1st June – 5th June Chapter 1 Introduction

6th June - 12th June Chapter 2 DFDL

13th June - 19th June Chapter 3 JPEG

20th June - 26th June Chapter 4 Analysis

1st July Interim report

1st July – 10th August Implementing a little, updating a little (Chapter 5, 6, 7)

(Updating every fortnight)

11th August – 16th August Conclusion, integrating the entire article

17th August – 25th August Checking

Figure 14 Time table for dissertation deliveries

 34

 35

Chapter 5 Design

5.1 Functionality design

According to my functional requirements analysis, the system should have the

functionalities below:

(1) Reading the original JPEG data file;

(2) Reading the corresponding DFDL description;

(3) Parsing the DFDL description and understanding global attributes defined in the

beginning of the description, such as the byteOrder;

(4) Parsing the DFDL description and understanding how to identify individual

segments of the original data file: knowing how many bytes each segment

occupies; what type of data they are representing; what the restrictions on their

values are; what the threshold address of each segment is;

(5) Based on the structure information, extracting each segment of data;

(6) Representing those segments of data in XML format with the tags expressing

what the data means.

5.2 System design

Now I am going to discuss the high-level design of the system from top to bottom,

beginning with the DFDLLibrary, which is the top-level class of the system, and

other core implementations in the following. The UML Class Diagram, which is a

powerful and widely accepted tool for describing the structure of classes in a system,

is used. At the end, an overview of the system design will be given, utilising the

Class Diagram to show the classes structures and utilising the Sequence Diagram to

illustrate their interactions.

 36

5.2.1 DFDLLibrary

The functionalities described in 5.1 are encapsulated into a high-level library called

DFDLLibrary, which provides a user with all the required interfaces. The

encapsulation groups those related functionalities into one unit, which can thereafter

be referred to by a single name. It provides a series of interfaces: parsing the DFDL

description of JPEG format as well as the image file; retrieving the structure

described in the DFDL description and the actual data; representing the data in XML

format. A UML Class Diagram, which is a powerful and widely accepted tool for

describing the structure of classes in a system, is used to visualise the DFDLLibrary

(see Figure 15).

Figure 15 Class Diagram of DFDLLibrary

Several benefits are gained from this approach. A user is not concerned with how the

functionalities are implemented, but needs to be able to use them as simply as

possible. Through encapsulation, implementation details are kept hidden from the

user, thus providing the user with maximum convenience. For example, what the

user usually wants to do is to parse a JPEG file according to the DFDL description,

after the encapsulation he only needs to call the parse() method provided by the

DFDLLibrary and specify the locations of the image file and the DFDL description,

without the requirement of knowing how the process actually performs. Similarly,

simply calling the generateXMLRepresentation() method will produce the XML

 37

representation of the original data file for the user. In fact, the method contains a

sequence of activities, but the user does not need to know them. Encapsulating

functionalities into DFDLLibrary makes the achievement of requirements much

more straightforward.

In addition, the encapsulation helps to ensure that the system works correctly by

hiding not only the implementation but also the data, preventing the user from

changing them improperly. It should always be kept in mind that the user might not

be a programming expert. Furthermore, the encapsulation is a means of increasing

the usability of the system, which is one of our non-functional requirements. It

makes the code reusable in other systems.

5.2.2 Beans

The official definition for a Bean is that "A bean is a reusable software component

based on Sun's JavaBeans specification that can be manipulated visually in a builder

tool." [15] Here I extended the concept of Bean to invisible components which have

a series of closely related attributes and methods, and are reusable. Taking the

student information as a simple example: a group of information, such as student

number, student name, gender, age, and address etc., can be encapsulated together as

a single unit - a student information bean, and then some setter and getter methods

can be defined for setting and getting the information. These related data are thus

grouped together and the object can be reused by different components of the system,

additionally the same structure can be directly reused for different students. This will

increase the readability and maintainability as well as the usability of the code.

In our system, there are two categories of information which are of great importance:

the structure information of the JPEG data format and the actual data which have

been segmented according to the structure information. Because they are critical

 38

intermediates of the whole system and they are required to be reused, I decided to

introduce two beans encapsulating them respectively: one is the StructureBean, and

the other one is the DataBean. Within each bean, the core is a tree data model which

will be used to store the information from the DFDL description and the actual data.

The tree data structure is used because the substance of a DFDL description is an

XML schema, which is formatted with a tree-like structure; and the actual data

should be organized with the same tree-like structure as the DFDL description. The

tree data structure I would use is provided by the Data Structures Library in Java

(JDSL), which is being developed at the Center for Geometric Computing,

Department of Computer Science, Brown University [16]. I do not intend to develop

a tree structure of my own, since it is a well-researched topic and its implementation

would be time-consuming, however, the most important reason is that how to

implement it is not the concern of my project and I do not want it to distract me from

concentrating on DFDL.

The differences between these two beans are that: firstly, besides the structure

information itself, the StructureBean should also store some global DFDL properties

and type attributes that are necessary for understanding the structure; secondly each

leaf node of the tree in the StructureBean is a composite type containing a sequence

of structure information, which I call a StructureItem; whereas each leaf node of the

tree in the DataBean is the actual data. A Class Diagram containing the

StructureBean and DataBean is shown in Figure 16.

 39

Figure 16 Class Diagrams of the StructureBean and DataBean

5.2.3 Parser

The StructureBean and the DataBean discussed in the previous section are the key

data components of the system; in this section we are going to discuss the key

processing components of the system: the DFDLParser and the DataFileParser.

The first one is for parsing the DFDL description, resulting in a StructureBean; and

the other one is for parsing the actual data file according to the StructureBean from

the first step.

I have separated them into two steps because it is a common use care that a batch of

pictures need to be parsed based on one DFDL description. The separation of the

two parsers enables us to only parse the DFDL description once and then parse the

images one by one. Otherwise the two parsing actions would happen at the same

time, so both of them must be performed together several times, which leads to

unnecessary overhead. Another reason for separating them is that performing them

together makes the code much more obscure and much more complex, whereas

keeping them separated makes the code much more legible, increasing the

readability and maintainability.

 40

However, the DFDLParser and the DataFileParser are not concrete classes, but

interfaces. At the concept level, an interface defines a series of public member

methods and no implementation, only specifying the APIs for certain functionalities;

while at the implementation level, an interface cannot be instantiated but a concrete

class can. Thus other two classes, the SimpleDFDLParser and the

SimpleDataFileParser, which implements the two interfaces respectively, are

defined. They provide the actual implementations of all methods declared in the

interfaces. The most significant reason for separating the interface and the

implementation is that it enables us to perform effective unit testing – designing the

test classes before writing the code – ensuring different interfaces are correctly

invoked.

The Class Diagrams of the two interfaces and their implementations are shown in

Figure 17.

Figure 17 Class Diagrams of the parsers

 41

5.2.4 BeanBuilder

We have defined a high-level DFDLLibrary that provides users with simple APIs

like parse(), two parsers which will be used by the parse() for actually parsing the

DFDL description and the data file respectively, and two beans storing the parsing

results. Now our concern is how the two parsers produce the two beans. The

simplest and most straightforward method is to parse the file whilst at the same time

writing information into the bean directly. However, in that case there would be

strong coupling between the parser and the bean, which has high impact on the

readability and the maintainability of the code.

Therefore, two BeanBuilders based on the “Builder” design pattern are introduced.

A builder is for the creation of object, with emphasis on encapsulating the

construction processes and separating the construction of a complex object from its

representation so that the same construction process can create different

representations [17]. By using the StructureBeanBuilder, the DFDLParser does not

interact with the StructureBean any more. Whenever information needs to be added

to the bean, the parser calls the builder to perform appropriate construction actions;

and finally the builder directly returns the resulted bean to the DFDLLibrary. The

same happens with the DataBeanBuilder. The Class Diagrams of the

StructureBeanBuilder and DataBeanBuilder is shown in Figure 18.

Figure 18 Class Diagrams of the BeanBuilders

 42

5.2.5 System design overview

The main Class Diagram and Sequence Diagram of the entire system is shown in

Figure 19 and Figure 20.

Figure 19 Class Diagram of the entire system

Figure 20 The sequence diagram of the system

Image user
:DFDLLibrary

simpleParse()

<<create>>

:SimpleDFDLParser

parseDFDLSchema()

:StructureBeanBuilder

return StructureBean

parseDataFile()

:SimpleDataFileParser

getDataBean()

:DataBeanBuilder

return DataBeanreturn DataBean

<<create>>

getStructureBean()

return StructureBean

<<create>>

<<create>>

 43

Chapter 6 Implementation highlights

In the first section of this chapter, I will define the subset of DFDL that my

implementation is based on, discuss how to implement the key points of the JPEG

DFDL description, and spotlight how to solve the two most challenging problems of

defining JPEG using DFDL. Afterwards I will explain the implementation of the

DFDL Schema parser and the data file parser in sections 6.2 and 6.3 respectively.

Rather than covering all the implementation details, I chose to put emphasis upon

the significant pieces of work in the different parts of the implementation.

6.1 DFDL Schema

In section 2.2, two simple but typical DFDL examples are given, using the classical

definition style, which is the best way to clarify the 3-level architecture and the core

concept of DFDL: separating the abstract data models and their physical

representations. However, after discussion with the DFDL working group, they

suggested that it would be more practical and more useful to implement DFDL in an

up to date simplified definition style, which will be described in section 6.1.1.

Furthermore, since the DFDL specification itself is still under research and debate, it

is impossible to cover all of its details, which are often changing, in the project.

Therefore, I chose to implement a core subset of the DFDL specification that is less

likely to change. The supported syntax and directives of DFDL Schema are defined

in sections 6.1.2 and 6.1.3. After that, I will explain how the two particularly

challenging difficulties – nibble elements and variable length segments – were

solved.

6.1.1 The simplified definition style

In the classical definition style used in the previous examples, the mappings are

 44

defined explicitly and are separated from the mapped type definition that must

specify what mappings it uses. This exactly coincides with the “API”, “Abstract

Data Model” and “Mapping”, three layers of DFDL architecture. However, the

expressions are a little tedious and difficult to parse. Consequently, as described in

[18], a simplified definition method is introduced: combining the mapping and the

mapped type definition together, using XML Schema attributes instead of separate

definitions. For the same example – a binary data file containing an integer and a

float – the mapped types can then be described as:

which is also preceded by the “use” directives and followed by the same element

definitions. Here we do not refer to any mapping explicitly, however all necessary

information which is required to identify different data segments is clearly

represented, including the type name, how many bytes it occupies, whether it is

representing binary data or text data, and which abstract data type it is based on. For

example, from the first definition we know that the mapped type dfdl:binaryInt is a

binary data, based on the XML Schema primitive type int and physically occupying

4 bytes. Moreover, this way of definition can be simply extended by adding other

attribute parameters, for instance, if the byte order of a particular data item is

different from others, we can add an attribute dfdl:byteOrder=“bigEndian” which

will override the global definition of byte order.

<xs:simpleType name=”dfdl:binaryInt” dfdl:byteSize="4"

dfdl:repType="binary">

<xs:restriction base="xs:int"/>

</xs:simpleType>

<xs:simpleType name=”dfdl:binaryFloat” dfdl:byteSize="4"

dfdl:repType="binary">

<xs:restriction base="xs:float"/>

</xs:simpleType>

 45

6.1.2 Overall syntax of DFDL Schema

Since the DFDL description is XML Schema based, it must generally conform to the

XSD specification: beginning with a schema header, followed by a sequence of

simple types definitions, complex types definitions and the actual elements that are

of certain types. A simple type must base on a particular XML Schema primitive

type or a DFDL type that has been defined. A complex type comprises a sequence of

simple type or complex type elements. Both simple types and complex types can be

defined either independently or implicitly within a particular element. An element

must have a “name” attribute, and either a “type” attribute specifying what type it is

or a new type definition immediately enclosed within the element. The occurrence of

elements might be constrained by using “minOccurs” and “maxOccurs” attributes,

which are “1” by default [19].

In ordinary XML Schema, it is permissible to have several elements which may

appear in any order, but this is not allowed in DFDL Schema, because every data

element in DFDL Schema must have a restriction on its occurrence order, as

otherwise it is impossible to identify individual elements. Therefore if there are

several elements, they must be assembled into a complex type element which places

a restriction on the order of its children.

Besides ordinary XML Schema directives, there might be some DFDL directives

embedded in a pair of “<xs:annotation><xs:appinfo>” and “</xs:appinfo></xs:

annotation>” tags, which are called DFDL annotations. All DFDL related

information is defined in this way. DFDL annotations may appear in two kinds of

places: immediately after the XML Schema header or within an “<xs:element>”

definition, which is the scoping issue of DFDL: if a DFDL directive appears at the

beginning and between “<xs:definitions>” and “</xs:definitions>”, it is a

definition with global scope, which provides default attributes to all elements; if it

 46

appears within a particular element, it is a definition with local scope, which will

override the default global attributes but only affect this element.

To clearly distinguish DFDL annotation directives and XML Schema directives,

qualified element directives and type references must be used, which means the

element tags and type names must be explicitly prefixed by the appropriate

namespace. If the attributes are under the same namespace as the element they

belong to, they can be unqualified, otherwise they also need to be qualified. For

instance, the element tags “xs:simpleType”, “xs:annotation”, “dfdl:dataFormat”, and

type names “xs:int”, “dfdl:binaryInt” must have the “xs:” and “dfdl:” prefix,

specifying whether they come from XML Schema or DFDL. However, within an

element like “xs:simpleType”, any XML Schema attributes like “name” don’t need

prefix, but DFDL attributes like “dfdl:byteSize” still need prefix as they are under

different namespace.

6.1.3 Basic DFDL directives supported

 “dfdl:dataFormat”

The “dfdl:dataFormat” directive is the most useful DFDL directive, specifying

different kinds of data format properties. Its syntax is:

<dfdl:dataFormat property1=”value1” property2=”value2” … />

With this directive, a wide range of mapping between abstract data type and physical

representation can be specified using supported properties, including repType,

byteOrder, byteSize and terminator.

The repType property specifies whether the data item represents a binary value or a

text string, so it has two possible values: “binary” and “text”. The byteOrder

property specifies how multi-byte data are physically constructed, “bigEndian” or

 47

“littleEndian”. For instance, the actual value of the two bytes of data 0x0001 is 1 if

the byteOrder is “bigEndian”, but it becomes 256 if the byteOrder is “littleEndian”.

The byteSize property defines how many physical bytes the data item occupies, it

might be either an integer (>=0), a mathematic expression or “unbounded”. The

terminator attribute is useful when the byteSize of an element is “unbounded”,

because an unbounded data item is ambiguous in the physical level, so it must be

defined what data should be read to construct this data item. The value of

“terminator” is a sting bracketed by “[” “]”, containing all candidate terminators

separated by “,”.

 “dfdl:use”

The “dfdl:use” directive is used to integrate DFDL types with XML Schema

primitive types. After a new simple DFDL type is defined, it can be linked with the

primitive type that it is based on, indicating that whenever the primitive type is used,

it should be interpreted that the DFDL type is used. For example, by using the

following directive:

<dfdl:use type="dfdl:binaryInt"/>

implies that each xs:int element should be considered as a dfdl:binaryInt element,

and processed on top of the structure information defined in the dfdl:binaryInt type.

However, it is required that there must be an explicit declaration of this DFDL type,

for instance:

 “dfdl:definitions”

Considering the usage of the “dfdl:use” directive, it should be a global definition.

<xs:simpleType name=”dfdl:binaryInt” Property1="value1"

Property2="value2">

<xs:restriction base="xs:int"/>

</xs:simpleType>

 48

However, how is a global definition expressed in DFDL? The answer is using

“dfdl:definitions” directive. A group of attributes with global scoping should be

declared by

where the individual directives may include repType, byteOrder, etc.

Definitions provide a set of default value for different attributes, which will be

propagated to all schema elements. However, if a simple type or an element has the

corresponding attributes declaration of its own, these local definitions will override

the global ones. For example, we can use

to specify the global byte order attribute, and then we do not need to declare it every

time except in the IFD0 element definition, where the byte order becomes

littleEndian. Thus, we have to use local DFDL annotation to override the global

value:

and it only affects this element.

<dfdl:definitions>

 Individual directives

</dfdl:definitions>

<dfdl:definitions>

 <dfdl:dataFormat byteOrder=”bigEndian”/>

</dfdl:definitions>

<xs:element name="numberOfEntry" type="xs:short">

<xs:annotation>

<xs:appinfo>

<dfdl:dataFormat byteOrder="littleEndian"/>

 </xs:appinfo>

</xs:annotation>

</xs:element>

 49

6.1.4 Nibble elements

The definitions of nibble elements which consist of several bits rather than whole

bytes is a challenge for describing JPEG using DFDL, since whether or not DFDL

should support the definition of bit construction and how to define it are still under

discussion. However, for some fields, like Internet protocol, data communication

and JPEG, which concern low-level details of data, it is necessary to be able to

define bit segments.

The central idea of defining bit streams is also to separate abstract data types and

their physical representations. For a high-level API or application, bit streams can

still be considered as bytes or even integers; however, their actual values come from

the value of that several particular bits, and the other bits are filled with “0”. To

distinguish the “nibble” definition from the ordinary byte stream definition, a new

DFDL directive is introduced:

Where the tag name “dfdl:bitstream” indicates that this element is made up of

several bits rather than ordinary whole bytes, and the number of effective bits is

constrained by the “length” attribute.

For example, in JPEG format, there are two consecutive property segments, the

"horizontalSamplingFactors" and the "verticalSamplingFactors", each of which

contains 4 bits. They should be defined as:

<dfdl:bitstream length=”value”/>

<xs:element name="horizontalSamplingFactors"

type="xs:byte">

<xs:annotation>

<xs:appinfo>

<dfdl:bitstream length="4"/>

 </xs:appinfo>

 </xs:annotation>

</xs:element>

 50

According to the definition, both of the two data segments are xs:byte data on the

abstract level and contain 4 bits of the original physical byte. After that, when

reading the actual image file where the original whole byte for them is 00100001

(0x21), their values can be interpreted as 00000010 (0x02) and 000000001 (0x01)

respectively.

The bit streams in JPEG have some characteristics: all of them are 4 bits and there

must be two consecutive 4-bit segments which make up a whole byte. It would be

extremely complicated to process bit steams which cannot make up whole bytes,

like 3 bits, 2 bits, and then 6 bits recursively, therefore my implementation has a

restriction on bits segments: each consecutive pair of segments must compose a

whole byte, like 4 bits + 4 bits or 3 bits + 5bits.

6.1.5 Variable length segments

Some data segments in JPEG have variable length, which is another challenge for

the DFDL description. Theoretically, there are two kinds of variable length segment.

One of them is a type of segment that has different length in different images, but

the length always has a specific value which can be determined or calculated from

the content of other segments; while the other kind of variable length segment does

not have a tangible length, which is called “unbounded”.

To define the first type of variable length segments, an XPath expression surrounded

<xs:element name="verticalSamplingFactors"

type="xs:byte">

<xs:annotation>

<xs:appinfo>

<dfdl:bitstream length="4"/>

</xs:appinfo>

</xs:annotation>

</xs:element>

 51

with a pair of curly brace “{” ”}” will be specified as the value of the “byteSize”

property of “dfdl:dataFormat” directive. The expression may contain any constant

values and variables whose names are that of the existing elements it refers to. For

example, the length of the quantisation table information segment “QTInfo” is equal

to the value of “lengthOfQT” element minus 2, so the definition should be:

When the “byteSize” is “unbounded”, there are several topics that must be

considered. Firstly, the unbounded element itself must only appear at most once,

otherwise it is impossible to identify the end of the first element and the beginning

of the second. Secondly, whether it appears and, if it appears, where the end of the

segment is depends on the fixed value or candidate values enumeration of the next

data element. If the next data segment does not have fixed or candidate values, the

“unbounded” byte size definition becomes an ambiguous definition that is not

allowed. However, the term “next data element” refers to a different element in a

different situation, which is classified and listed in Figure 21

<xs:element name="lengthOfQT" type="xs:short"/>

<xs:element name="QTInfo" type="xs:byte">

<xs:annotation>

<xs:appinfo>

<dfdl:dataFormat byteSize="{lengthOfQT-2}"/>

</xs:appinfo>

</xs:annotation>

</xs:element>

 52

Figure 21 Possible situations of “next data element” referring to

To avoid confusion, I introduced a new property terminator of the

“dfdl:dataFormat” directive, which is described in section 6.1.2.2. For example, as

the entropy-coded segment is the last element of a scanType element and the scan

may appear more than once, the candidate terminators must be explicitly specified:

If there is no confusion, in other words, there is only one possible terminator of the

unbounded segment, the terminator annotation can be left out. For example, the

ignorableBytes element of the APP1Type is also unbounded, but as the maxOccurs

The last element

Not the last element

The next element is simple
type

The next element is
complex type

The maxOccurs of the
containing element is 1

The maxOccurs of the
containing element is not 1

“Next data element”
refers to

The next simple type
element

The first simple type
element of the next

complex type

The next simple type
element, or the first

simple type element of
the next complex type

The first simple type
element of the containing

complex type

<xs:element name="lastEntropyCodedSegment" type="xs:byte">

<xs:annotation>

<xs:appinfo>

<dfdl:dataFormat byteSize="unbounded"/>

 <dfdl:dataFormat terminator="[0xffda, 0xffc0, 0xffd9]"/>

</xs:appinfo>

</xs:annotation>

</xs:element>

 53

of the containing type APP1Type is 1, the next element must be the frameType in

which the first simple element has fixed value 0xffdb, so it can be defined without

specifying the terminator explicitly:

6.2 The DFDL schema parser

6.2.1 Overall idea

According to the overall syntax, a DFDL Schema can be considered as a node tree

composed of different purposed definition blocks, which should be processed

separately. The typical tree representation of DFDL schema is shown in Figure 22

Figure 22 The typical tree representation of DFDL schema

<xs:element name="ignorableBytes" type="xs:byte">

<xs:annotation>

<xs:appinfo>

<dfdl:dataFormat byteSize="unbounded"/>

</xs:appinfo>

</xs:annotation>

</xs:element>

<xs:schema>

DFDL global
attributes definitions

Simple type
definitions

Complex type
definitions

…
…

…
…

“<xs:element>”
data element, either
simple type or
complex type

Simple type
elements

Complex type
elements

…
…

…
…

 54

The root of the tree is always “<xs:schema>” tag, indicating that this is an XML

schema. Its first child is the DFDL global attributes definitions block, which is not

compulsory; and then there are a number of simple type definitions and complex

type definitions; finally it is a top-level “<xs:element>” data element, which is the

root element of the target XML file. The order of the second level nodes is not fixed,

in other words, the type definitions may appear after the element definition that

refers to that type. On the lower level of the tree, complex type definition may

contain an ordered sequence of simple type elements and complex type elements,

and again each complex type element may contain the same kinds of children on and

on. After classifying different kinds of definition blocks, they can be identified by

using the DOM XML parser and then processed separately. Finally their structure

information is stored into the appropriate part of the structure bean.

6.2.2 SAX vs. DOM

The entire parsing process is based on the Java DOM parser which is a standard way

to parse XML files. However, at the beginning of the project, there was a choice

between SAX and DOM, both of which are widely used XML parser APIs. The

SAX APIs are very fast and suitable for parsing through a large XML file once, but

are more difficult to use and its usability is limited. For example, it does not support

the management of several XML elements at the same time or the ability to go back

to the previous one etc. The DOM APIs allows the programmer to manage the entire

document and provides them with more flexibility, but its scalability is limited by

the length of the document and the memory of the computer, as it needs to store the

entire document in a tree structure within the computer’s memory. As a DFDL

schema is usually not a very big file, but has a complicated structure that needs

flexible processing, I chose to use the DOM APIs in my project.

 55

6.2.3 Processing global DFDL attributes

After converting the DFDL Schema to a DOM tree, we traverse through its child

nodes and process them one by one. The first child we might meet is the global

DFDL attribute definitions block with “<xs:annotation>”, “<xs:appinfo>” and

“<dfdl:definitions>” tags.

Inside the <dfdl:definitions> block, there might be a number of attribute

declarations. If it is an ordinary attribute, like representation type or byte order, the

attribute name and its value will be stored into the attributes table, a HashMap

object, of the structure bean. As we will need to frequently lookup attributes in the

table later, the speed of access is significant for the program. A HashMap object is

used because it provides very fast data lookup operations, although it sacrifices

memory for the sake of speed.

A HashMap is conceptually a contiguous section of memory with a number of

addressable elements [20] and it also can be thought of as a table with two columns.

There are two sets of members in it, keys and values. When putting a key and a

value into a HashMap, it will firstly performs a hashing function on the key object to

map the key to a hash value, which is used as an index into the hash map identifying

where to place the value in the memory. Similarly, when retrieving a value by

specifying a particular key, the key will firstly be hashed to hash value, according to

which the requested value can be located quickly.

For the same reason, both simple type definitions and complex type definitions are

stored in HashMap objects. However, they are different in that the values of

attributes table are strings specifying the attributes like “binary” or “bigEndian”; the

values of simple types table are again HashMap objects containing the detailed

properties of this type; while the values of complex types table are node trees,

 56

indicating what elements they consist of.

Besides ordinary attributes, there might be a couple of <dfdl:use> directives which

place physical representation restrictions on the abstract data types. The first step is

to check whether the mapped type has been registered in the simple types table. If it

has been registered, simply link this mapped type with the abstract type, indicating

that whenever we meet an element of this abstract type, it should be processed as a

element of the mapped type. If it has not been registered, locate the mapped type

definition within the whole DFDL description document, process and registered this

simple type, and then link this mapped type with the abstract type.

What we mean by “linking” these two types is to insert a record to the global

attributes table of the structure bean. However, it is different from inserting an

ordinary attribute in that what we actually insert is the abstract type name, which is

the key, and the mapped type name, which is the value.

6.2.4 Processing simple type definitions

After global attributes definitions, we need to process simple type definitions

surrounded by “<xs:simpleType>” and “</xs:simpleType>” tags. The challenge is

that there might be two types of simple type definitions: the first one is independent

definitions that exist on their own and have their own names; the other one is the

definitions closely attached to particular elements. The program thus must be able to

identify both of these two types of simple type definitions. What’s more, the second

type of definitions does not have to have a name attribute. I use the name of the

element it attaches to as its name, because firstly this name can exactly denote what

the type is, and secondly name confliction is avoided, in other words, the situation

that two types have the same name but different type properties will not occur, as the

elements with the same name always are same type.

 57

Another interesting point of the simple type definitions is that the values of the

simple type table are also HashMap objects. In the inner table, the keys are the

names of different type properties and the values are the corresponding values. For

example, the structure information of simple type “binaryByte” in the structure bean

is shown in Figure 23

Key Value

Key Value

base xs:byte

dfdl:byteSize 1
dfdl:binaryByte

dfdl:repType binary

Figure 23 The structure information of simple type “binaryByte”

Finally, we should pay more attention to the “base” type. When the new type is

based on an existing simple type, the properties of the existed type should be copied

to the new type, and moreover, if the type is an abstract type, we should locate the

proper mapped type and copy its properties. For example, the simple type element

"numberOfComponents" has its own type definition which is based on “xs:byte”, so

we have to locate the existing “dfdl:binaryByte” type which is the mapped type of

“xs:byte”, copy its properties and then add new properties. The structure information

of "numberOfComponents" type is shown in Figure 24

Key Value

Key Value

base xs:byte

dfdl:byteSize 1

dfdl:repType binary

numberOfComponents

enumeration [0x01, 0x03, 0x04]

Figure 24 The structure information of "numberOfComponents" type

 58

6.2.5 Processing complex type definitions

Whenever the DOM parser arrives at the “<xs:complexType>” tag, the processing of

a complex type should begin. At first, it has the same name problem with processing

simple types and the same solution.

However, the most significant feature of processing complex types is that the

structure information of a complex type is assembled into a node tree, which is then

stored entirely into the complex types table of the structure bean, and each node is a

structure item. As a complex type may consist of two types of elements, simple type

and complex type, there should be two types of structure item corresponding to them,

simple structure item and complex structure item. In addition, another type of

structure item, which is called the label structure item, is required for constructing

the tree. All structure items consist of name, minOccurs, maxOccurs and fixed value

attributes of the corresponding data elements. Label structure items only contain

these four attributes; while simple structure items and complex structure items

contain another “type” attribute specifying what type the data element is.

The first step of processing the complex type is to construct the root node of the tree

with a label structure item containing the type name, then look into the

“<xs:sequence>” definition block and process each element. The result of

processing an element will be a tree with only the root node containing the proper

structure item, and then this result tree should be inserted into the complex type tree

as a child of its root node. Taking the “JpegDFDL” complex type for example, its

structure information is represented in Figure 25

 59

Key Value

JpegDFDL

Figure 25 The structure information of “JpegDFDL” complex type

6.2.6 Process elements

When processing elements, there are several different situations that should be

focused on, resulting in a tree with only the root node containing the proper structure

item being returned.

Firstly, if the element explicitly specifies a type through the “type” attribute, either a

simple type or a complex type, and this type has been registered, a tree with a

structure item of this type can be simply created and returned.

Secondly, if the “type” attribute of the element is explicitly specified but the type has

not been registered, or if there is no explicit “type” attribute declaration but the type

definition is immediately attached to the element, what we should do is to locate the

type definition, process and register it appropriately at first, and then process the

element as same as the first situation.

Finally, and also the most challenging situation, if there is an “<xs:annotation>”

definition block immediately after the element to be processed, it means that there

are some restrictions placed on the element’s physical representation, and these

JpegDFDL

SOI: dfdl:twoBytes, 1, 1, 0xffd8

APP0: APP0Type, 0, 1, null

APP1: APP1Type, 0, 1, null

EOI: dfdl:twoBytes, 1, 1, 0xffd9

Frame: frameType, 1, unbounded, null

 60

restrictions should be added to the original properties of the base type, overriding

any existing properties, such that a new simple type definition is formed and then

registered. I decided to use

as the name of the new type. However, the base type also may or may not have been

registered. Thus we should correctly process and register the base type first if it does

not exist, and then define the new type according to the DFDL annotation.

For example, the following code defines the “bytesToBeRead” data element,

placing a new restriction on the byte size attribute of the “xs:byte” type via DFDL

annotation. Consequently, the structure information of this new type should be:

Key Value

Key Value

base xs:byte

dfdl:byteSize
{thumbnailWidth*th
umbnailHeight*3}

dfdl:binaryByte&bytesToBeRead

dfdl:repType binary

Figure 26 The structure information of a new type defined by DFDL annotation

After defining the new type, the element can be processed as same as the first

situation.

<xs:element name="bytesToBeRead" type="xs:byte">

<xs:annotation>

<xs:appinfo>

<dfdl:dataFormat

byteSize="{thumbnailWidth*thumbnailHeight*3}"/>

</xs:appinfo>

</xs:annotation>

</xs:element>

“the base type name” + “&” + “the element name”

 61

6.3 The data file parser

6.3.1 Recursion algorithm

After the structure bean is generated by the DFDL Schema parser, all structure

information required for parsing the data file and extracting individual data elements

has been well prepared. The core algorithm of parsing the data file is recursive, and

its pseudo-code is shown in Figure 27

Process simple
data element:

Traverse the structure tree {

IF (it is a simple structure item) {

 Process simple data element

}

ELSE IF (it is a complex structure item) {

 Process complex data element

}

}

Prepare necessary parameters

Generate the local data tree

FOR (i = 1 to minOccurs) {

 Read the data;

 Add the data to the data tree;

}

WHILE (i < maxOccurs) AND (it is not the end of the

data file) {

 IF (this data element does not occur) BREAK

 Read the data

 Add the data to the data tree

 i++

}

RETURN the result data tree

 62

Figure 27 The pseudo-code of the recursion algorithm for parsing data file

On the highest level, the structure tree of the structure bean is traversed and its

children are properly processed according to their types. During processing the data

element, both simple type and complex type, the difficulty is that one structure item

may correspond to several actual data elements, which is determined by the

minOccurs and maxOccurs attribute of the structure item. The minOccurs attribute

Prepare necessary parameters

Generate the local data tree

FOR (i = 1 to minOccurs) {

 Traverse the complex type tree {

IF (it is a simple structure item) {

 Process simple data element

}

ELSE IF (it is a complex structure item) {

 Process complex data element

}

Merge the result tree to the data tree

}

}

WHILE (i < maxOccurs) AND (it is not the end of the

data file) {

 IF (this data element does not occur) BREAK;

 Traverse the complex type tree {

IF (it is a simple structure item) {

 Process simple data element

}

ELSE IF (it is a complex structure item) {

 Process complex data element

}

Merge the result tree to the data tree

}

 i++

}

RETURN the result data tree

Process complex
data element:

 63

indicates the number of times this data element must appear, so the FOR structure is

used to iteratively process the data element minOccurs times; however, as there is no

indication how many times the data element actually occurs, we have to perform the

same processing repeatedly, checking every time that it really appears, as long as the

number of times we have tried is still less than the maxOccurs.

The result of processing a simple element is a tree whose children nodes are

SimpleDataItems containing the element name, value, and some attributes. These

children nodes will be later merged to the parent data tree. If a data element appears

4 times, for example, the result tree looks like:

Figure 28 Simple data tree

Finally, processing complex data elements is the core of the recursion: the complex

type tree is traversed; if the node is a simple structure item, process the simple

element as above; if it is a complex structure item, process it as another complex

data element; and merge all of these result trees to a parent complex data tree. Take

the complex date element “frameHeader”, whose structure is shown in Figure 29a,

as an example,

SimpleDataTree

SimpleDataItem SimpleDataItem SimpleDataItem SimpleDataItem

 64

Figure 29a The structure of “frameHeader” element

it consists of several simple type elements and a complex type element

“frameComponent” which comprises another four simple type elements and may

appear more than once. If it appears two times for instance, the complex data tree for

“frameComponent” elements will consist of two branches, each of which is a

“frameComponent”, see Figure 29b.

Figure 29b The complex data tree for “frameComponent” data elements

Finally, this complex data tree as well as other simple data trees will be merged to

the parent “frameHeader” complex data tree shown in Figure 29c

ComplexDataTree

frameComponent
HorizontalSamplingFactors

componentId

VerticalSamplingFactors

QTDestination

frameComponent
HorizontalSamplingFactors

componentId

VerticalSamplingFactors

QTDestination

frameHeaderType

SOFMarker: dfdl:twoBytes, 1, 1, 0xffc0

lengthOfSOF: dfdl:binaryShort, 1, 1, null

numberOfComponents: umberOfComponents, 1, 1, null
frameComponent: frameComponent,

{numberOfComponents},
{numberOfComponents},
null

……

 65

Figure 29c The complex data tree for “frameHeader” data elements

6.3.2 File wrapper

Whilst parsing the data file, we must frequently read the data file and as the reading

process is sometimes quite complicated, I designed a FileWrapper class

encapsulating a number of powerful reading methods, which can be used easily and

flexibly during parsing the data file.

For instance, one of the read methods, readUntil(), is critical for parsing variable

length data segments which are unbounded. As data element is unbounded, we have

to determine how many bytes to read before reading it. Either a terminator or a

collection of possible terminators can help to determine the length of the data

element, so there are two readUntil() methods with different parameters based on

the Java polymorphism and override mechanism. Both of them firstly lookup the

appropriate terminator in the data file, calculate how many bytes should be read and

then read the data.

ComplexDataTree
frameComponent

HorizontalSamplingFactors

componentId

VerticalSamplingFactors

QTDestination

frameComponent
HorizontalSamplingFactors

componentId

VerticalSamplingFactors

QTDestination

SOFMarker

lengthOfSOF

……

numberOfComponents

frameHeader

 66

6.3.3 Convertor

Convertor is another very important and useful utility class designed for facilitating

the parsing of data file. Generally speaking, there are two categories of methods: one

is for parsing the XPath expression, and the other one is for the conversion between

bytes array and different representations like integer, string etc.

As mentioned before, one of the challenges of this project is to process variable

length data segments, including unbounded segments and segments whose lengths

depend on the contents of other segments. By using the readUntil() method of file

wrapper, unbounded segments can be parsed. However, for parsing the other type of

variable length segments, it is required to be able to evaluate their byte size attribute

that is an XPath expression. The expToValue() method of Convertor class solve this

problem.

The first step is to format the expression string as there might be “{”, “}” and spaces

which are illegal characters in an expression. Secondly, we must separate variables

and constants from the expression. The values of variables come from the contents

of other data segments, so I designed a lookup table storing the names and values of

all data elements that have been parsed such that values of those required variables

could be found from this lookup table. Finally, the Java Mathematical Expression

Parser [21] library is used to evaluating mathematical expressions of the “byteSize”

attribute.

In addition, there is another series of methods which operate on the bytes array, for

instance, converting the bytes array to the corresponding integer value based on a

particular byte order, or representing the array as a string of hex numbers etc. These

methods are also useful when generating the XML representation from the data

bean.

 67

6.4 Testing

6.4.1 Unit testing

The whole system, especially the two parsers, is quite complex, requiring several

levels of method invoking. Therefore, it is of great importance to ensure that the

lowest level methods work correctly before implementing the method that will

invoke them. Otherwise, it would be extremely difficult to locate errors. Moreover,

the developer is always the person who understands the program best, so it is much

more straightforward to test the program during development. Unit testing

introduces the concept of writing independent units in isolation from the whole

system to test the correctness of particular modules of the code. It helps the

programmers to become more productive, while at the same time increasing the

quality of the developed code [22]. When unit testing is utilized, it should be part of

the development rather than after the development. Nowadays, the notion of “test

first” has become more and more popular: writing unit tests before writing the code

to be tested. By doing this, the test puts the entire focus on whether the result is what

is expected, and it will not be affected by the actual implementation.

Junit is a freely available framework for unit testing, providing a wide range of

useful methods which minimised the required work. It is used in my project for

testing some critical classes, like the parsers and different utilities classes. Taking the

bytesToText() method from the Convertor class as an example, it aims to convert a

byte array into a text string based on the ASCII character codes. If the byte array is

the expected result should be “Exif”. So in the test case, both the original array and

the expected result are specified, and then the assertEquals() provided by Junit is

invoked to test whether the result of the function is equal to the expected one. After

coding the test, I implemented the bytesToText() method and then tested this

0x45, 0x78, 0x69, 0x66

 68

particular module separately until it works correctly.

Within the system, there are some classes that do not need to be tested. For instance,

the interface and abstract classes, which do not have actual implementation, and the

data model classes which only have simple get and set methods. Amongst all the

classes, I chose to test the utility classes including Convertor, FileWrapper,

SchemaUtilities and DataParserUtilities; the builder classes like

StructureBeanBuilder, DataBeanBuilder and XMLBuilder; and the higher-level

classes including SimpleDFDLParser, SimpleDataFileParser and DFDLLibrary. I

chose them because they are the actual implementation of the core functions of the

system.

6.4.2 System testing

Unit testing is used for testing individual modules of the system. However, whether

these modules can work together and produce the right result still needs to be tested.

So besides Junit test cases, I designed three system-test classes to test if the whole

system works well with a binary file, a text file and a JPEG image.

 The binary file contains three groups of binary data, and each group comprises

of a byte, a short, an integer, a long, a float and a double. The binary sequence

is:

The DFDL description for this binary data file and the result XML

representation are shown in Appendix Ⅰ.

01 00 01 00 00 00 01 00 00 00 00 00 00 00 01 3F 80 00

00 3F F0 00 00 00 00 00 00 02 00 02 00 00 00 02 00 00

00 00 00 00 00 02 40 00 00 00 40 00 00 00 00 00 00 00

03 00 03 00 00 00 03 00 00 00 00 00 00 00 03 40 40 00

00 40 08 00 00 00 00 00 00

 69

 The text file contains five students’ records, each of which comprises of “ID”

(10 characters), “Name” (20 characters) and “Sex” (6 characters) three fields. It

looks like:

The DFDL description for this text file and its result XML representation are

shown in Appendix Ⅱ.

 The structure of the JPEG image has been described above, so I will not repeat

here. The DFDL Schema for JPEG data format and the result XML

representation of one example image is given in Appendix Ⅲ.

Within each system-test class, I called the two parsers one after the other, taking the

DFDL description and the data file as their inputs respectively, and afterward

generated the XML representation of the file and checked the result by human

comparison.

There are some other methods that could be used to check the resulting XML

representations. The first one is that we could generate an expected XML

representation by hand, which can then be used for automatic comparison with the

resulting one. However, the contents of the JPEG images are too complex to do so.

Alternatively, we could design another parser for parsing the XML representation

and reverting it to the binary representation, and then compare the resulting binary

file with the original one. This method is powerful, credible and very easy to use,

but developing the new parser will be another complicated project and take a lot of

time. Considering all the pros and cons, I decided to use human comparison at this

stage, which is the most straightforward method for this project.

0506004 Yi Zhu Male

0508002 Merry Female

0602010 James Male

0455504 Haogang Zhu Male

0309111 Yaoyao Liu Female

 70

Finally, I run the same system tests on three platforms: Windows XP, Sun Solaris 8

and Redhat Linux 9, and they produced the correct results.

6.5 Summary

In the implementation phase, I successfully described the JPEG data format as well

as another two types of data file based on a subset of the DFDL specification. I

designed a generic DFDL parser for parsing any DFDL descriptions based on that

subset of the DFDL specification, and a data file parser for parsing the

corresponding data file, and finally an XML representation of the original data file

will be produced. All of these functionalities work correctly with three types of data

file on three different platforms.

However, whilst trying to describe the JPEG format, I found some limitations to the

DFDL. Firstly, it cannot express condition dependence. JPEG is not a context free

data format. Sometimes, the length of a data segment or the number of times it

actually appears directly depends on the contents of other segments, and this

situation has been handled. However, sometimes whether the data segment appears

depends on the value of a particular segment. For instance, if the restart interval

value of DRI (Define restart interval) segment is zero or this marker segment does

not appear at all, it means that restart intervals for the following scans are disabled

and there will be only one entropy-coded segment; otherwise if the value is nonzero,

the restart intervals are enables and there might be several entropy-coded segments.

DFDL is not powerful enough to define this condition relationship. Secondly, DFDL

cannot deal with indirect reference. In the APP1 definition segment of JPEG,

sometimes the value of an entry is not the actual data but the relative address of the

data, and moreover whether or not it is the data depends on the value itself. This

kind of reference is too complex for DFDL to define.

 71

Chapter 7 Conclusion

In this project, I utilised a subset of the DFDL specification to successfully solve a

complicated real world problem – describing the JPEG data format, and then

implemented a DFDL library, including a generic DFDL Schema parser for parsing

any DFDL descriptions and a data file parser for extracting individual data segments

according to the structure information provided by the DFDL Schema parser, and

finally the original JPEG data file can be represented in XML format. All of these

have met our original goals – determining how to describe the JPEG data format

using a subset of the DFDL specification, and implementing a generic parser and

some other libraries, which result in an XML representation of the original data file.

One significant characteristic of this project is that it follows formal software

engineering principles and uses a series of development processes, which highly

increase the chance of project success. The most significant and valuable one is the

risk management. As I was not familiar with DFDL at the beginning of the project, I

seriously considered it as a potential risk, which would highly affect the entire

project, and thought of some possible solutions. This risk became real a few weeks

into the project. At first, I thought that I should write DFDL descriptions for

individual JPEG images, however, after the discussion with DFDL working group, I

realised that I should define a DFDL description for the JPEG data format rather

than individual images. Because of this timely correction, the misunderstanding did

not significantly affect the project. In addition, my choice of “Design to schedule”

development model and my work plan were shown to be reasonable; I followed

them quite well and finished all deliverables on time.

Furthermore, I learned and tried to use a variety of techniques which are absolutely

 72

new for me in the project, like the unit test and different design patterns. I wrote unit

tests for some core classes, for instance the Convertor and the FileWrapper etc.,

before coding. It made sure that those utility methods would work correctly, which

provided a solid foundation for the implementation of the parsers. Design patterns

like “builder” help to simplify the entire system design and increase the robustness

of the code.

The DFDL Schema for JPEG data format I designed would be a valuable example of

using DFDL to solve practical problems, and would be very helpful to other DFDL

learner in the future, as when I studied DFDL, the most significant difficulty was

that there was no example of describing practical problems using DFDL.

Furthermore, my implementation of the DFDL Schema parser and the data file

parser introduces a notion of using tree data structure to keep the structure

information defined in the DFDL Schema and the actual data from the original data

file. Last but not least, whilst coming up with the DFDL description for the JPEG

data format, I found some limitation of the DFDL specification, including

expressing condition dependence and indirect reference, which would also be very

valuable for the future DFDL research.

In a nutshell, the entire project completed successfully and I learned a lot of new

things from it. I am sure it would be helpful to the entire DFDL project, because I

not only utilised the DFDL to solve a real problem, but also tried to overcome some

challenges, and what’s more, I found a few limitations to the DFDL. As to these

limitations, further investigation will be required in the future, and I hope to be able

to carry out some of this work.

 73

Reference

[1] Grid.org, Grid Computing: The Evolution, http://www.grid.org/about/gc/

evolution.htm

[2] Ian Foster, Carl Kesselman, The Grid 2: Blueprint for a New Computing

Infrastructure

[3] Mario Antonioletti, Malcolm Atkinson, Rob Baxter, Andrew Borley, Neil

Chue Hong, Brian Collins, Neil Hardman, Alastair C. Hume, Alan Knox,

Mike Jackson, Amy Krause, Simon Laws, James Magowan, Norman W.

Paton, Dave Pearson, Tom Sugden, Paul Watson, Martin Westhead, The

design and implementation of Grid database services in OGSA-DAI,

Concurrency and Computation: Practice and Experience Volume 17, Issue

2-4 , Pages 357 - 376, Feb 2005.

[4] DFDL working group webpage, http://forge.gridforum.org/projects/dfdl-wg

[5] Mike Beckerle, Martin Westhead, GGF DFDL Primer,

https://forge.gridforum.org/projects/dfdl-wg/document/DFDL_Primer/en/1

[6] W. Fenner, R. Frederick, RTP Payload Format for JPEG-compressed Video,

http://xml.resource.org/public/rfc/html/rfc2035.html

[7] JPEG File Interchange Format Version 1.02,

http://www.jpeg.org/public/jfif.pdf

[8] International standard DIS 10918-1, CCITT recommendation T.81, Digital

Compression and Coding of Continuous-tone Still Images

[9] Introduction to HDF5, http://hdf.ncsa.uiuc.edu/HDF5/doc/H5.intro.html

[10] BinX, http://www.edikt.org/binx/

[11] William B. Pennebaker, Joan L. Mitchell, JPEG – still image data

compression standard, Chapter 2, P9

[12] William B. Pennebaker, Joan L. Mitchell, JPEG – still image data

 74

compression standard, Chapter 2, P13

[13] William B. Pennebaker, Joan L. Mitchell, JPEG – still image data

compression standard, Chapter 7, P97

[14] JPEG File Layout and Format, http://www.funducode.com/freec/Fileformats/

format3/format3b.htm

[15] Cay S. Horstmann, Gary Cornell, Core Java 2: VolumeⅡ- Advanced Fetures,

Chapter 8

[16] http://www.jdsl.org/

[17] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Patterns:

elements of reusable object-oriented software, Chapter 3, P97

[18] Kristoffer H. Rose, DFDL Proposal

[19] W3C Recommendation, XML Schema Part 0: Primer,

http://www.w3.org/TR/xmlschema-0/

[20] Ben Tindale, Hash table in Java, http://www.linuxgazette.com/issue57/

tindale.html

[21] http://www.singularsys.com/jep/

[22] Keld H. Hansen, Unit Testing Java Programs,

http://javaboutique.internet.com/tutorials/UnitTesting/

 75

Appendix Ⅰ Describing a simple binary data file

 The DFDL description (SimpleBinary.xsd)

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace=http://dataformat.org/

elementFormDefault="qualified"

 attributeFormDefault="unqualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:dfdl="http://dataformat.org/">

 <xs:annotation>

 <xs:appinfo>

 <dfdl:definitions>

 <dfdl:dataFormat repType="binary"/>

 <dfdl:dataFormat byteOrder="littleEndian"/>

 <dfdl:use type="dfdl:binaryByte"/>

 <dfdl:use type="dfdl:binaryShort"/>

 <dfdl:use type="dfdl:binaryInt"/>

 <dfdl:use type="dfdl:binaryLong"/>

 <dfdl:use type="dfdl:binaryFloat"/>

 <dfdl:use type="dfdl:binaryDouble"/>

 </dfdl:definitions>

 </xs:appinfo>

 </xs:annotation>

 <xs:simpleType name="dfdl:binaryByte" dfdl:byteSize="1"

dfdl:repType="binary">

 <xs:restriction base="xs:byte"/>

 </xs:simpleType>

 <xs:simpleType name="dfdl:binaryShort" dfdl:byteSize="2"

dfdl:repType="binary">

 <xs:restriction base="xs:short"/>

 </xs:simpleType>

 <xs:simpleType name="dfdl:binaryInt" dfdl:byteSize="4"

dfdl:repType="binary">

 <xs:restriction base="xs:int"/>

 76

 </xs:simpleType>

 <xs:simpleType name="dfdl:binaryLong" dfdl:byteSize="8"

dfdl:repType="binary">

 <xs:restriction base="xs:long"/>

 </xs:simpleType>

 <xs:simpleType name="dfdl:binaryFloat" dfdl:byteSize="4"

dfdl:repType="binary">

 <xs:restriction base="xs:float"/>

 </xs:simpleType>

 <xs:simpleType name="dfdl:binaryDouble" dfdl:byteSize="8"

dfdl:repType="binary">

 <xs:restriction base="xs:double"/>

 </xs:simpleType>

 <xs:element name="SimpleBinary">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="DataSet" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="byte" type="xs:byte"/>

 <xs:element name="short" type="xs:short"/>

 <xs:element name="int" type="xs:int"/>

 <xs:element name="long" type="xs:long"/>

 <xs:element name="float" type="xs:float"/>

 <xs:element name="double" type="xs:double"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

 77

 The XML representation of the original data file (SimpleBinaryXML.xml)

<DFDL>

 <SimpleBinary>

 <DataSet>

 <byte>01</byte>

 <short>0001</short>

 <int>00000001</int>

 <long>0000000000000001</long>

 <float>3f800000</float>

 <double>3ff0000000000000</double>

 </DataSet>

 <DataSet>

 <byte>02</byte>

 <short>0002</short>

 <int>00000002</int>

 <long>0000000000000002</long>

 <float>40000000</float>

 <double>4000000000000000</double>

 </DataSet>

 <DataSet>

 <byte>03</byte>

 <short>0003</short>

 <int>00000003</int>

 <long>0000000000000003</long>

 <float>40400000</float>

 <double>4008000000000000</double>

 </DataSet>

 </SimpleBinary>

</DFDL>

 78

 79

Appendix Ⅱ Describing a simple text file

 The DFDL description (SimpleText.xsd)

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace=http://dataformat.org/

elementFormDefault="qualified"

 attributeFormDefault="unqualified"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:dfdl="http://dataformat.org/">

 <xs:annotation>

 <xs:appinfo>

 <dfdl:definitions>

 <dfdl:dataFormat repType="text"/>

 <dfdl:dataFormat characterSet="UTF-8"/>

 <dfdl:use type="dfdl:binaryByte"/>

 <dfdl:use type="dfdl:textString"/>

 </dfdl:definitions>

 </xs:appinfo>

 </xs:annotation>

 <xs:simpleType name="dfdl:binaryByte" dfdl:byteSize="1"

dfdl:repType="binary">

 <xs:restriction base="xs:byte"/>

 </xs:simpleType>

 <xs:simpleType name="dfdl:textString" dfdl:byteSize="unbounded">

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

 <xs:element name="SimpleText">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Student" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="ID" type="xs:string">

 80

 <xs:annotation>

 <xs:appinfo>

 <dfdl:dataFormat byteSize="10"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="Name" type="xs:string">

 <xs:annotation>

 <xs:appinfo>

 <dfdl:dataFormat byteSize="20"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="Sex" type="xs:string">

 <xs:annotation>

 <xs:appinfo>

 <dfdl:dataFormat byteSize="6"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="CR" type="xs:byte" fixed="0x0d"/>

 <xs:element name="LF" type="xs:byte" fixed="0x0a"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

 81

 The XML representation of the original text file (SimpleTextXML.xml)

<DFDL>

 <SimpleText>

 <Student>

 <ID>0506004 </ID>

 <Name>Yi Zhu </Name>

 <Sex>Male </Sex>

 <CR>0d</CR>

 <LF>0a</LF>

 </Student>

 <Student>

 <ID>0508002 </ID>

 <Name>Merry </Name>

 <Sex>Female</Sex>

 <CR>0d</CR>

 <LF>0a</LF>

 </Student>

 <Student>

 <ID>0602010 </ID>

 <Name>James </Name>

 <Sex>Male </Sex>

 <CR>0d</CR>

 <LF>0a</LF>

 </Student>

 <Student>

 <ID>0455504 </ID>

 <Name>Haogang Zhu </Name>

 <Sex>Male </Sex>

 <CR>0d</CR>

 <LF>0a</LF>

 </Student>

 <Student>

 <ID>0309111 </ID>

 <Name>Yaoyao Liu </Name>

 <Sex>Female</Sex>

 <CR>0d</CR>

 <LF>0a</LF>

 </Student>

 </SimpleText>

</DFDL>

 82

 83

Appendix Ⅲ Describing a JPEG image

 The DFDL Schema for the JEPG format (JPEG_DFDL_Schema.xsd)

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

 targetNamespace="http://dataformat.org/"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:dfdl="http://dataformat.org/">

 <!--DFDL setup-->

 <xs:annotation>

 <!-- Configuration & defaults -->

 <xs:appinfo>

 <dfdl:definitions>

 <dfdl:dataFormat repType="binary"/>

 <dfdl:dataFormat byteOrder="bigEndian"/>

 <dfdl:use type="dfdl:twoBytes"/>

 <dfdl:use type="dfdl:binaryByte"/>

 <dfdl:use type="dfdl:binaryShort"/>

 <dfdl:use type="dfdl:binaryInt"/>

 <dfdl:use type="dfdl:textString"/>

 </dfdl:definitions>

 </xs:appinfo>

 </xs:annotation>

 <!-- Mapping for Binary types-->

 <xs:simpleType name="dfdl:twoBytes" dfdl:byteSize="2"

dfdl:repType="binary">

 <xs:restriction base="xs:hexBinary"/>

 </xs:simpleType>

 <xs:simpleType name="dfdl:binaryByte" dfdl:byteSize="1"

dfdl:repType="binary">

 <xs:restriction base="xs:byte"/>

 </xs:simpleType>

 84

 <xs:simpleType name="dfdl:binaryShort" dfdl:byteSize="2"

dfdl:repType="binary">

 <xs:restriction base="xs:short"/>

 </xs:simpleType>

 <xs:simpleType name="dfdl:binaryInt" dfdl:byteSize="4"

dfdl:repType="binary">

 <xs:restriction base="xs:int"/>

 </xs:simpleType>

 <xs:simpleType name="dfdl:textString" dfdl:repType="text">

 <xs:restriction base="xs:string"/>

 </xs:simpleType>

 <!-- DFDL description of the JPEG format-->

 <xs:element name="JpegDFDL">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="SOI" type="xs:hexBinary" fixed="0xffd8"/>

 <xs:element name="APP0" type="APP0Type" minOccurs="0"/>

 <xs:element name="APP1" type="APP1Type" minOccurs="0"/>

 <xs:element name="frame" type="frameType"

maxOccurs="unbounded"/>

 <xs:element name="EOI" type="xs:hexBinary" fixed="0xffd9"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <!--Definitions of different segments-->

 <xs:complexType name="APP0Type">

 <xs:sequence>

 <!-- JFIF header -->

 <xs:element name="APP0Marker" type="xs:hexBinary"

fixed="0xffe0"/>

 <xs:element name="lengthOfAPP0" type="xs:short"/>

 <xs:element name="fileId1" type="xs:string" fixed="JFIF"/>

 <xs:element name="fileId2" type="xs:byte" fixed="0x00"/>

 <!-- JFIF data -->

 <xs:element name="MajorRevisionNumber" type="xs:byte"/>

 85

 <xs:element name="MajorRevisionNumber" type="xs:byte"/>

 <xs:element name="unitsForDensities">

 <!-- 0 = no units, x/y density specify the aspect ratio instead

-->

 <!-- 1 = x/y density are dots/inch -->

 <!-- 2 = x/y density are dots/cm -->

 <xs:simpleType>

 <xs:restriction base="xs:byte">

 <xs:enumeration value="0x00"/>

 <xs:enumeration value="0x01"/>

 <xs:enumeration value="0x02"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="xDensity" type="xs:short"/>

 <xs:element name="yDensity" type="xs:short"/>

 <xs:element name="thumbnailWidth" type="xs:byte"/>

<xs:element name="thumbnailHeight" type="xs:byte"/>

 <!-- n bytes for thumbnail, n = width*height*3 bytes -->

 <xs:element name="bytesToBeRead" type="xs:byte">

 <xs:annotation>

 <xs:appinfo>

 <dfdl:dataFormat byteSize="{thumbnailWidth*thumbnailHeight

*3}"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

<xs:complexType name="APP1Type">

 <xs:sequence>

 <!-- Exif header -->

 <xs:element name="APP1Marker" type="xs:hexBinary"

fixed="0xffe1"/>

 <xs:element name="lengthOfAPP1" type="xs:short">

 <xs:annotation>

 <xs:appinfo>

 <dfdl:dataFormat byteOrder="littleEndian"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 86

 <xs:element name="fileId1" type="xs:string" fixed="Exif">

 <xs:annotation>

 <xs:appinfo>

 <dfdl:dataFormat byteSize="4"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="fileId2" type="xs:byte" fixed="0x00"/>

 <xs:element name="fileId3" type="xs:byte" fixed="0x00"/>

 <!-- TIFF header -->

 <xs:element name="byteAlign" type="xs:hexBinary"/>

 <xs:element name="tagMark" type="xs:short"/>

 <xs:element name="offsetToIFD0" type="xs:int"/>

 <!-- Image File directory of main image -->

 <xs:element name="IFD0">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="numberOfEntry" type="xs:short">

 <xs:annotation>

 <xs:appinfo>

 <dfdl:dataFormat byteOrder="littleEndian"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="entry" minOccurs="{numberOfEntry}"

 maxOccurs="{numberOfEntry}">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="tagNumber" type="xs:short"/>

 <xs:element name="dataFormat" type="xs:short"/>

 <xs:element name="numberOfEntryComponents"

type="xs:int"/>

 <xs:element name="dataValue" type="xs:int"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="offsetToIFD1" type="xs:int"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 87

 <!-- unstructured bytes containing values for tags -->

 <xs:element name="ignorableBytes" type="xs:byte">

 <xs:annotation>

 <xs:appinfo>

 <dfdl:dataFormat byteSize="unbounded"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="frameType">

 <xs:sequence>

 <!-- Table-specification and miscellaneous marker segment syntax

-->

 <xs:element name="TableSpecification"

 minOccurs="0" type="TableSpecificationType"/>

 <!-- Frame header -->

<xs:element name="frameHeader" type="frameHeaderType"/>

 <!-- One or more scan -->

 <xs:element name="scan" type="scanType" maxOccurs="unbounded"/>

 </xs:sequence>

</xs:complexType>

 <xs:complexType name="TableSpecificationType">

 <xs:sequence>

 <!-- Quantization tables marker segment -->

 <xs:element name="DQT" minOccur="0" type="DQTType"/>

 <!-- Huffman tables marker segment -->

 <xs:element name="DHT" minOccur="0" type="DHTType"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="DQTType">

 <xs:sequence>

 88

 <xs:element name="DQTMarker" type="xs:hexBinary"

fixed="0xffdb"/>

 <xs:element name="lengthOfQT" type="xs:short"/>

 <xs:element name="QTInfo" type="xs:byte">

 <xs:annotation>

 <xs:appinfo>

 <dfdl:dataFormat byteSize="{lengthOfQT-2}"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

<xs:complexType name="DHTType">

 <xs:sequence>

<xs:element name="DHTMarker" type="xs:hexBinary"

fixed="0xffc4"/>

 <xs:element name="lengthOfHT" type="xs:short"/>

 <xs:element name="HTInfo" type="xs:byte">

 <xs:annotation>

 <xs:appinfo>

 <dfdl:dataFormat byteSize="{lengthOfHT-2}"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

<xs:complexType name="frameHeaderType">

 <xs:sequence>

 <xs:element name="SOFMarker" type="xs:hexBinary"

fixed="0xffc0"/>

 <xs:element name="lengthOfSOF" type="xs:short"/>

 <xs:element name="dataPrecision" type="xs:byte"/>

 <xs:element name="imageHeight" type="xs:short"/>

 <xs:element name="imageWidth" type="xs:short"/>

 <xs:element name="numberOfComponents">

 <xs:simpleType>

 <xs:restriction base="xs:byte">

 <!-- grey scaled -->

 89

<xs:enumeration value="0x01"/>

<!-- colour YcbCr(YUV) or YIQ -->

<xs:enumeration value="0x03"/>

<xs:enumeration value="0x04"/> <!-- colour CMYK -->

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="frameComponent"

minOccurs="{numberOfComponents}"

 maxOccurs="{numberOfComponents}">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="componentId" type="xs:byte"/>

 <xs:element name="horizontalSamplingFactors"

type="xs:byte">

 <xs:annotation>

 <xs:appinfo>

 <dfdl:bitstream length="4"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="verticalSamplingFactors" type="xs:byte">

 <xs:annotation>

 <xs:appinfo>

 <dfdl:bitstream length="4"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 <xs:element name="QTDestination" type="xs:byte"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

</xs:complexType>

<xs:complexType name="scanType">

 <xs:sequence>

 <!-- Scan header -->

 <xs:element name="scanHeader" type="scanHeaderType"/>

 <!-- entropy-coded segment -->

 90

 <xs:element name="lastEntropyCodedSegment" type="xs:byte">

 <xs:annotation>

 <xs:appinfo>

 <dfdl:dataFormat byteSize="unbounded"/>

 <dfdl:dataFormat terminator="[0xffda, 0xffc0, 0xffd9]"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

<xs:complexType name="scanHeaderType">

 <xs:sequence>

<xs:element name="SOSMarker" type="xs:hexBinary"

fixed="0xffda"/>

 <xs:element name="lengthOfSOS" type="xs:short"/>

 <xs:element name="numberOfComponents">

 <xs:simpleType>

 <xs:restriction base="xs:byte">

 <!-- grey scaled -->

 <xs:enumeration value="0x01"/>

 <!-- colour YcbCr(YUV) or YIQ -->

 <xs:enumeration value="0x03"/>

 <xs:enumeration value="0x04"/> <!-- colour CMYK -->

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="scanComponent"

minOccurs="{numberOfComponents}"

 maxOccurs="{numberOfComponents}">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="componentId" type="xs:byte"/>

 <xs:element name="DCTDestination" type="xs:byte">

 <xs:annotation>

 <xs:appinfo>

 <dfdl:bitstream length="4"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 91

 <xs:element name="ACTDestination" type="xs:byte">

 <xs:annotation>

 <xs:appinfo>

 <dfdl:bitstream length="4"/>

 </xs:appinfo>

 </xs:annotation>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="reservedBytes" type="xs:byte">

 <xs:annotation>

<xs:appinfo>

 <dfdl:dataFormat byteSize="3"/>

</xs:appinfo>

</xs:annotation>

 </xs:element>

 </xs:sequence>

</xs:complexType>

</xs:schema>

 92

 The XML representation of the original image (JpegXML.xml)

<DFDL>

 <JpegDFDL>

 <SOI>ffd8</SOI>

 <APP1>

 <APP1Marker>ffe1</APP1Marker>

 <lengthOfAPP1>3845</lengthOfAPP1>

 <fileId1>Exif</fileId1>

 <fileId2>00</fileId2>

 <fileId3>00</fileId3>

 <byteAlign>4949</byteAlign>

 <tagMark>2a00</tagMark>

 <offsetToIFD0>08000000</offsetToIFD0>

 <IFD0>

 <numberOfEntry>0c00</numberOfEntry>

 <entry>

 <tagNumber>0e01</tagNumber>

 <dataFormat>0200</dataFormat>

 <numberOfEntryComponents>20000000</numberOfEntryComponents>

 <dataValue>9e000000</dataValue>

 </entry>

 <entry>

 <tagNumber>0f01</tagNumber>

 <dataFormat>0200</dataFormat>

 <numberOfEntryComponents>18000000</numberOfEntryComponents>

 <dataValue>be000000</dataValue>

 </entry>

 <entry>

 <tagNumber>1001</tagNumber>

 <dataFormat>0200</dataFormat>

 <numberOfEntryComponents>07000000</numberOfEntryComponents>

 <dataValue>d6000000</dataValue>

 </entry>

 <entry>

 <tagNumber>1201</tagNumber>

 <dataFormat>0300</dataFormat>

 <numberOfEntryComponents>01000000</numberOfEntryComponents>

 <dataValue>01000000</dataValue>

 </entry>

 <entry>

 <tagNumber>1a01</tagNumber>

 93

 <dataFormat>0500</dataFormat>

 <numberOfEntryComponents>01000000</numberOfEntryComponents>

 <dataValue>ee000000</dataValue>

 </entry>

 <entry>

 <tagNumber>1b01</tagNumber>

 <dataFormat>0500</dataFormat>

 <numberOfEntryComponents>01000000</numberOfEntryComponents>

 <dataValue>f6000000</dataValue>

 </entry>

 <entry>

 <tagNumber>2801</tagNumber>

 <dataFormat>0300</dataFormat>

 <numberOfEntryComponents>01000000</numberOfEntryComponents>

 <dataValue>02000000</dataValue>

 </entry>

 <entry>

 <tagNumber>3101</tagNumber>

 <dataFormat>0200</dataFormat>

 <numberOfEntryComponents>09000000</numberOfEntryComponents>

 <dataValue>fe000000</dataValue>

 </entry>

 <entry>

 <tagNumber>3201</tagNumber>

 <dataFormat>0200</dataFormat>

 <numberOfEntryComponents>14000000</numberOfEntryComponents>

 <dataValue>1e010000</dataValue>

 </entry>

 <entry>

 <tagNumber>1302</tagNumber>

 <dataFormat>0300</dataFormat>

 <numberOfEntryComponents>01000000</numberOfEntryComponents>

 <dataValue>02000000</dataValue>

 </entry>

 <entry>

 <tagNumber>6987</tagNumber>

 <dataFormat>0400</dataFormat>

 <numberOfEntryComponents>01000000</numberOfEntryComponents>

 <dataValue>26020000</dataValue>

 </entry>

 <entry>

 <tagNumber>a5c4</tagNumber>

 <dataFormat>0700</dataFormat>

 94

 <numberOfEntryComponents>04010000</numberOfEntryComponents>

 <dataValue>32010000</dataValue>

 </entry>

 <offsetToIFD1>96040000</offsetToIFD1>

 </IFD0>

 <ignorableBytes>

4f4c594d505553204449474954414c2043414d455241202020202020202

020004f4c59

 </ignorableBytes>

 </APP1>

 <frame>

 <TableSpecification>

 <DQT>

 <DQTMarker>ffdb</DQTMarker>

 <lengthOfQT>00c5</lengthOfQT>

 <QTInfo>

000a07070807060a0808080b0a0a0b0e18100e0d0d0e1d1516111823

1f2524221f2221

 </QTInfo>

 </DQT>

 <DHT>

 <DHTMarker>ffc4</DHTMarker>

 <lengthOfHT>01a2</lengthOfHT>

 <HTInfo>

0000010501010101010100000000000000000102030405060708090a

0b100002010303

 </HTInfo>

 </DHT>

 </TableSpecification>

 <frameHeader>

 <SOFMarker>ffc0</SOFMarker>

 <lengthOfSOF>0011</lengthOfSOF>

 <dataPrecision>08</dataPrecision>

 <imageHeight>0078</imageHeight>

 <imageWidth>00a0</imageWidth>

 <numberOfComponents>03</numberOfComponents>

 <frameComponent>

 <componentId>01</componentId>

 <horizontalSamplingFactors>02</horizontalSamplingFactors>

 <verticalSamplingFactors>01</verticalSamplingFactors>

 <QTDestination>00</QTDestination>

 </frameComponent>

 <frameComponent>

 95

 <componentId>02</componentId>

 <horizontalSamplingFactors>01</horizontalSamplingFactors>

 <verticalSamplingFactors>01</verticalSamplingFactors>

 <QTDestination>01</QTDestination>

 </frameComponent>

 <frameComponent>

 <componentId>03</componentId>

 <horizontalSamplingFactors>01</horizontalSamplingFactors>

 <verticalSamplingFactors>01</verticalSamplingFactors>

 <QTDestination>01</QTDestination>

 </frameComponent>

 </frameHeader>

 <scan>

 <scanHeader>

 <SOSMarker>ffda</SOSMarker>

 <lengthOfSOS>000c</lengthOfSOS>

 <numberOfComponents>03</numberOfComponents>

 <scanComponent>

 <componentId>01</componentId>

 <DCTDestination>00</DCTDestination>

 <ACTDestination>00</ACTDestination>

 </scanComponent>

 <scanComponent>

 <componentId>02</componentId>

 <DCTDestination>01</DCTDestination>

 <ACTDestination>01</ACTDestination>

 </scanComponent>

 <scanComponent>

 <componentId>03</componentId>

 <DCTDestination>01</DCTDestination>

 <ACTDestination>01</ACTDestination>

 </scanComponent>

 <reservedBytes>003f00</reservedBytes>

 </scanHeader>

 <lastEntropyCodedSegment>

f18a29005140094b400945001450014500145001450014500145002d1

4005140094b40

 </lastEntropyCodedSegment>

 </scan>

 </frame>

 <EOI>ffd9</EOI>

 </JpegDFDL>

</DFDL>

 96

 97

Appendix Ⅳ Java API Document

Here I only listed the Java API document for the core classes of the system,

including

Index Page

Package description 1

Hierarchy For All Packages 2

Convertor 3

DFDLLibrary 7

DataBeanBuilder 10

DataParserUtilities 13

FileWrapper 16

SchemaUtilities 20

SimpleDFDLParser 23

SimpleDataFileParser 25

StructureBeanBuilder 27

XMLBuilder 30

 Overview Package Class Use Tree Index Help
 PREV NEXT FRAMES NO FRAMES All Classes

Packages
msc.api Package of interfaces and abstract classes, including DFDL

Schema parser, data file parser, structure item and data item.

msc.bean Package of all the data related classes, including data beans and
different kinds of data items stored in the beans.

msc.impl Package of the implementation classes for the high-level library,
DFDL Schema parser and data file parser.

msc.util Package of miscellaneous utility classes, including convertor, file
access facilities, builders and constants class.

 Overview Package Class Use Tree Index Help
 PREV NEXT FRAMES NO FRAMES All Classes

1

Hierarchy For All Packages
Package Hierarchies:

msc.api, msc.bean, msc.impl, msc.util

Class Hierarchy
class java.lang.Object

class msc.util.Convertor
class msc.bean.DataBean
class msc.util.DataBeanBuilder
class msc.api.DataItem

class msc.bean.LabelDataItem
class msc.bean.SimpleDataItem

class msc.util.DataParserUtilities
class msc.impl.DFDLLibrary
class msc.util.Directives
class msc.util.ErrorMessage
class msc.util.FileWrapper
class msc.bean.LookupTable
class msc.util.PrimitiveType
class msc.util.Printer
class msc.util.SchemaUtilities
class msc.impl.SimpleDataFileParser (implements
msc.api.DataFileParser)
class msc.impl.SimpleDFDLParser (implements msc.api.DFDLParser)
class msc.bean.StructureBean
class msc.util.StructureBeanBuilder
class msc.api.StructureItem

class msc.bean.ComplexStructureItem
class msc.bean.LabelStructureItem
class msc.bean.SimpleStructureItem

class msc.util.XMLBuilder

Interface Hierarchy
interface msc.api.DataFileParser
interface msc.api.DFDLParser

Overview Package Class Use Tree Index Help
 PREV NEXT FRAMES NO FRAMES All Classes

Overview Package Class Use Tree Index Help
 PREV NEXT FRAMES NO FRAMES All Classes

2

msc.util
Class Convertor
java.lang.Object
 msc.util.Convertor

public class Convertor
extends Object

The class containing different kinds of useful translation and conversion methods

Author:
Yi Zhu

Overview Package Class Use Tree Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Constructor Summary
Convertor()

Method Summary
static String bytesToHexString(byte[] bytes)

 Returns a string representation of a bytes array in base 16
static int bytesToInt(byte[] bytes, String byteOrder)

 Convert a bytes array to the corresponding int value based on
a particular byte order

static String bytesToText(byte[] bytes)
 Return the text representaion of a bytes array based on the
Unicode character

static double expToValue(String exp, LookupTable varTable)
 Evaluate the value of the formular expression containing
both figures and variables

static String formatString(String s)
 Format the string, deleting the "{", "}" and space

static ArrayList

getTerminator(String terminator)
 Extract terminators from a terminator expression like "[0xff,

3

Convertor

public Convertor()

bytesToHexString

public static String bytesToHexString(byte[] bytes)

Returns a string representation of a bytes array in base 16

Parameters:
bytes - the bytes array to be converted

Returns:
the hexadecimal string representation of the bytes array

bytesToInt

public static int bytesToInt(byte[] bytes,
 String byteOrder)

Convert a bytes array to the corresponding int value based on a particular byte
order

Parameters:
bytes - the original bytes array
byteOrder - the byte order attribute

Returns:
the int value of the bytes array

0xd9, 0x34]"
static ArrayList getVarFromExp(String exp)

 Extract variables from a expression containing both figures
and variables

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

Method Detail

4

bytesToText

public static String bytesToText(byte[] bytes)

Return the text representaion of a bytes array based on the Unicode character

Parameters:
bytes - the bytes array to be converted

Returns:
the text representaion of the bytes array

expToValue

public static double expToValue(String exp,
 LookupTable varTable)

Evaluate the value of the formular expression containing both figures and
variables

Parameters:
exp - the expression to be evaluated
varTable - the table containing all variables and their values

Returns:
the value of the expression

formatString

public static String formatString(String s)

Format the string, deleting the "{", "}" and space

Parameters:
s - the original string

Returns:
a new string containing all characters of the original string except "{",
"}" and space

getTerminator

public static ArrayList getTerminator(String terminator)

Extract terminators from a terminator expression like "[0xff, 0xd9, 0x34]"

5

Parameters:
terminator - the original terminator expression

Returns:
an array of the terminators contained in the original terminator
expression

getVarFromExp

public static ArrayList getVarFromExp(String exp)

Extract variables from a expression containing both figures and variables

Parameters:
exp - the original expression

Returns:
an array of variables in the expression

Overview Package Class Use Tree Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

6

msc.impl
Class DFDLLibrary
java.lang.Object
 msc.impl.DFDLLibrary

public class DFDLLibrary
extends Object

The high-level library encapsulating all required functionalities

Author:
Yi Zhu

Overview Package Class Use Tree Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Constructor Summary
DFDLLibrary()

Method Summary
 void generateXMLRepresentation(String xmlURI)

 Generate the cooresponding XML file which represents the
data file

 DataBean getDataBean()
 Return the data bean containing the actual data.

 StructureBean getStructureBean()
 Return the structure bean containing the structure information.

 void parseDataFile(String dataFileURI)
 An interface for expert clients, parse the data file according to
the structure information from the StructureBean, setting the
DataBean

 void parseSchema(String DFDLSchemaURI)
 An interface for expert clients, parse the DFDL schema,
setting the StructureBean

 void simpleParse(String DFDLSchemaURI, String dataFileURI)
 A simple interface for un-expert clients, simply parsing the

7

DFDLLibrary

public DFDLLibrary()

generateXMLRepresentation

public void generateXMLRepresentation(String xmlURI)

Generate the cooresponding XML file which represents the data file

Parameters:
xmlURI - the URI giving the location of the output XML representation

getDataBean

public DataBean getDataBean()

Return the data bean containing the actual data.

Returns:
the DataBean containing the data

getStructureBean

public StructureBean getStructureBean()

Return the structure bean containing the structure information.

Returns:
the StructureBean containing the structure information

DFDL schema and an data file at the same time, setting the
StructureBean and the DataBean

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

Method Detail

8

parseDataFile

public void parseDataFile(String dataFileURI)

An interface for expert clients, parse the data file according to the structure
information from the StructureBean, setting the DataBean

Parameters:
dataFileURI - the URI giving the base location of the original data file

parseSchema

public void parseSchema(String DFDLSchemaURI)

An interface for expert clients, parse the DFDL schema, setting the
StructureBean

Parameters:
DFDLSchemaURI - the URI giving the base location of the DFDL Schema

simpleParse

public void simpleParse(String DFDLSchemaURI,
 String dataFileURI)

A simple interface for un-expert clients, simply parsing the DFDL schema and
an data file at the same time, setting the StructureBean and the DataBean

Parameters:
DFDLSchemaURI - the URI giving the base location of the DFDL Schema
dataFileURI - the URI giving the base location of the original data file

Overview Package Class Use Tree Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

9

msc.util
Class DataBeanBuilder
java.lang.Object
 msc.util.DataBeanBuilder

public class DataBeanBuilder
extends Object

The builder for building a date bean step by step

Author:
Yi Zhu

Overview Package Class Use Tree Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Constructor Summary
DataBeanBuilder()
 Constructs a DataBeanBuilder

Method Summary
 void buildItem(NodeTree subTree)

 Insert sub tree at the root
 void buildRoot(Object object)

 Build the root element
 DataBean getDataBean()

 Return the result data bean
 void mergeTree(NodeTree parentTree, Position parent,

NodeTree subTree)
 Merge the children of sub-tree to the parent node of the parent tree

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

10

DataBeanBuilder

public DataBeanBuilder()

Constructs a DataBeanBuilder

buildItem

public void buildItem(NodeTree subTree)

Insert sub tree at the root

buildRoot

public void buildRoot(Object object)

Build the root element

Parameters:
object - the object to be built

getDataBean

public DataBean getDataBean()

Return the result data bean

Returns:
the result DataBean

mergeTree

public void mergeTree(NodeTree parentTree,
 Position parent,
 NodeTree subTree)

Merge the children of sub-tree to the parent node of the parent tree

Constructor Detail

Method Detail

11

Parameters:
parentTree - the parent tree
parent - the parent node to which the children of sub-tree will be added
subTree - whose children to be merged to the parent tree

Overview Package Class Use Tree Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

12

msc.util
Class DataParserUtilities
java.lang.Object
 msc.util.DataParserUtilities

public class DataParserUtilities
extends Object

Provide utility methods for processing the DFDL Schema

Author:
Yi Zhu

Overview Package Class Use Tree Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Constructor Summary
DataParserUtilities(FileWrapper dataFile, LookupTable lookupTable,
HashMap simpleTypes, HashMap complexTypes)
 Constructs a new DataParserUtilities instance with necessary proporties

Method Summary
 SimpleStructureItem findSimpleItem(Object nextItem)

 Find the first simple data item from the specified data
item

 boolean isOccur(Object object)
 Return true if the specified data item occurs, otherwise
return false

 int parseByteSize(String byteSize)
 Translate the string value of "byteSize" attribute into
actual value

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

13

DataParserUtilities

public DataParserUtilities(FileWrapper dataFile,
 LookupTable lookupTable,
 HashMap simpleTypes,
 HashMap complexTypes)

Constructs a new DataParserUtilities instance with necessary proporties

Parameters:
dataFile - the data file being read
lookupTable - the lookup table from which the contents of previous data
elements can be get
simpleTypes - the mapping between all simple type attributes and their names
complexTypes - the mapping between all complex type structure and their
names

findSimpleItem

public SimpleStructureItem findSimpleItem(Object nextItem)

Find the first simple data item from the specified data item

Parameters:
nextItem - the data item to be searched

Returns:
the first SimpleStructureItem contained in this data item

isOccur

public boolean isOccur(Object object)

Return true if the specified data item occurs, otherwise return false

Parameters:
object - the data item to be tested

Returns:
Return true if the specified data item occurs, otherwise return false

Constructor Detail

Method Detail

14

parseByteSize

public int parseByteSize(String byteSize)

Translate the string value of "byteSize" attribute into actual value

Parameters:
byteSize - the string representation of the "byteSize" attribute

Returns:
the actual value of the "byteSize" attribute

Overview Package Class Use Tree Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

15

msc.util
Class FileWrapper
java.lang.Object
 msc.util.FileWrapper

public class FileWrapper
extends Object

A file wrapper class providing more convenient access to the file, including different
kinds of read method

Author:
Yi Zhu

Overview Package Class Use Tree Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Constructor Summary
FileWrapper(String URI)
 Constructor of the FileWrapper class, instancing the InputStream of the
specified URI

Method Summary
 File file()

 Return the file object
 int length()

 Return the length of the file
 boolean match(byte[] data, ArrayList enum)

 Check whether the bytes array equals to any one of the terminator
stored in the enumeration list

 boolean match(byte[] data, String terminator)
 Check whether the bytes array equals to the terminator

 int offset()
 Return the offset of the file

 byte[]

readByte(int n)
 Read n bytes of data from the input stream into an array of bytes,

16

FileWrapper

public FileWrapper(String URI)

Constructor of the FileWrapper class, instancing the InputStream of the
specified URI

Parameters:
URI -

file

public File file()

Return the file object

Returns:
the file object

length

public int length()

Return the length of the file

and then return the bytes array
 byte[] readUntil(ArrayList enum, int byteSize)

 Read data from the input stream into an array of bytes until arriving
at any one of the terminators stored in the enumeration list, and then return
the bytes array

 byte[] readUntil(String terminator, int byteSize)
 Read data from the input stream into an array of bytes until arriving
at the terminator, and then return the bytes array

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

Method Detail

17

Returns:
the length of the file

match

public boolean match(byte[] data,
 ArrayList enum)

Check whether the bytes array equals to any one of the terminator stored in the
enumeration list

Parameters:
data - the bytes array to be checked
enum - the enumeration list containing all possible terminators

Returns:
true if the bytes array equals to any one of the terminator stored in the
enumeration list; false otherwise

match

public boolean match(byte[] data,
 String terminator)

Check whether the bytes array equals to the terminator

Parameters:
data - the bytes array to be checked
terminator - the terminator to be cheched

Returns:
true if they are same; false otherwise

offset

public int offset()

Return the offset of the file

Returns:
the offset of the file

readByte

18

public byte[] readByte(int n)

Read n bytes of data from the input stream into an array of bytes, and then
return the bytes array

Parameters:
n - the number of bytes to be read

Returns:
the bytes array containing the data

readUntil

public byte[] readUntil(ArrayList enum,
 int byteSize)

Read data from the input stream into an array of bytes until arriving at any one
of the terminators stored in the enumeration list, and then return the bytes array

Parameters:
enum - the enumeration list containing all possible terminators
byteSize - the byte size of the terminator

Returns:
the bytes array containing the data

readUntil

public byte[] readUntil(String terminator,
 int byteSize)

Read data from the input stream into an array of bytes until arriving at the
terminator, and then return the bytes array

Parameters:
terminator - the terminator for stoping read
byteSize - the byte size of the terminator

Returns:
the bytes array containing the data

Overview Package Class Use Tree Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

19

msc.util
Class SchemaUtilities
java.lang.Object
 msc.util.SchemaUtilities

public class SchemaUtilities
extends Object

The class containing utilities methods for processing XML Schema

Author:
Yi Zhu

Overview Package Class Use Tree Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Constructor Summary
SchemaUtilities()

Method Summary
 Element getChildByTagName(Element parent, String tagName)

 Return the first child element of the parent element, which has the
specified tag name

 Element getElementByAttr(Element parent, String attr, String value)
 Return the first child element of the parent, which has the specified
attribute that has the specified value

 Element getFirstChildElement(Element parent)
 Return the first child element of the parent

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

20

SchemaUtilities

public SchemaUtilities()

getChildByTagName

public Element getChildByTagName(Element parent,
 String tagName)

Return the first child element of the parent element, which has the specified
tag name

Parameters:
parent - the parent element whose children will be examined
tagName - the requested tag name

Returns:
the child element with the specified tag name; return NULL if not found

getElementByAttr

public Element getElementByAttr(Element parent,
 String attr,
 String value)

Return the first child element of the parent, which has the specified attribute
that has the specified value

Parameters:
parent - the parent element whose children will be examined
attr - the requested attribute
value - the requested value of the requested attribute

Returns:
the child element with the specified attribute which has the specified
value; return NULL if not found

getFirstChildElement

public Element getFirstChildElement(Element parent)

Return the first child element of the parent

Parameters:

Method Detail

21

parent - the parent element from which the child will be found
Returns:

the first child element of the parent

Overview Package Class Use Tree Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

22

msc.impl
Class SimpleDFDLParser
java.lang.Object
 msc.impl.SimpleDFDLParser

All Implemented Interfaces:
DFDLParser

public class SimpleDFDLParser
extends Object
implements DFDLParser

The DFDL Schema parser, parsing structure information, which is required by
parsing data files, from a DFDL descrption

Author:
Yi Zhu

Overview Package Class Use Tree Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Constructor Summary
SimpleDFDLParser(String schemaURI)
 The constructor, setting the base location of the DFDL Schema.

Method Summary
 StructureBean parseDFDLSchema()

 Parse the DFDL schema and the associated data file,
generating the result structureBean containing the strucuture
information.

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

23

SimpleDFDLParser

public SimpleDFDLParser(String schemaURI)

The constructor, setting the base location of the DFDL Schema.

Parameters:
schemaURI - the URI giving the base location of the DFDL Schema

parseDFDLSchema

public StructureBean parseDFDLSchema()

Parse the DFDL schema and the associated data file, generating the result
structureBean containing the strucuture information.

Specified by:
parseDFDLSchema in interface DFDLParser

Returns:
the result structureBean

Method Detail

Overview Package Class Use Tree Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

24

msc.impl
Class SimpleDataFileParser
java.lang.Object
 msc.impl.SimpleDataFileParser

All Implemented Interfaces:
DataFileParser

public class SimpleDataFileParser
extends Object
implements DataFileParser

The data file parser class for parsing the data file based on a structure bean resulted
from a SimpleDFDLParser

Author:
Yi Zhu

Overview Package Class Use Tree Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Constructor Summary
SimpleDataFileParser(StructureBean structureBean)
 The constructor, setting the structure bean from which all required structure
information comes

Method Summary
 DataBean parseDataFile(String dataFileURI)

 Parse the data file, according to the structure information provided
by the structure bean

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

25

SimpleDataFileParser

public SimpleDataFileParser(StructureBean structureBean)

The constructor, setting the structure bean from which all required structure
information comes

Parameters:
structureBean - the StructureBean

parseDataFile

public DataBean parseDataFile(String dataFileURI)

Parse the data file, according to the structure information provided by the
structure bean

Specified by:
parseDataFile in interface DataFileParser

Parameters:
dataFileURI - the location of the data file to be parsed

Returns:
the result DataBean containing all the data in the data file, according to
the structure information from the StructureBean

Method Detail

Overview Package Class Use Tree Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

26

msc.util
Class StructureBeanBuilder
java.lang.Object
 msc.util.StructureBeanBuilder

public class StructureBeanBuilder
extends Object

The builder for building a structure bean step by step

Author:
Yi Zhu

Overview Package Class Use Tree Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Constructor Summary
StructureBeanBuilder()
 Constructs a new StructureBeanBuilder

Method Summary
 void addAttribute(Object key, Object value)

 Add a global attribute to the attributes HashMap of the
StructureBean

 void addComplexType(Object key, Object value)
 Add a complex type to the complex type HashMap of the
StructureBean

 void addSimpleType(Object key, Object value)
 Add a simple type to the simple type HashMap of the
StructureBean

 void buildRoot(Object object)
 Build the root element

 void buildTree(NodeTree subTree)
 Add a sub-tree to the structure tree of the StructureBean

 StructureBean getStructureBean()
 Return the result StructureBean

27

StructureBeanBuilder

public StructureBeanBuilder()

Constructs a new StructureBeanBuilder

addAttribute

public void addAttribute(Object key,
 Object value)

Add a global attribute to the attributes HashMap of the StructureBean

Parameters:
key - the name of the attribute to be added
value - the value of the attribute

addComplexType

public void addComplexType(Object key,
 Object value)

Add a complex type to the complex type HashMap of the StructureBean

Parameters:
key - the name of the complex type
value - the structure information of the complex type

addSimpleType

public void addSimpleType(Object key,
 Object value)

Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

Method Detail

28

Add a simple type to the simple type HashMap of the StructureBean

Parameters:
key - the name of the simple type
value - the structure information of the simple type

buildRoot

public void buildRoot(Object object)

Build the root element

Parameters:
object - the object to be built

buildTree

public void buildTree(NodeTree subTree)

Add a sub-tree to the structure tree of the StructureBean

Parameters:
subTree - the sub-tree to be added

getStructureBean

public StructureBean getStructureBean()

Return the result StructureBean

Returns:
the result StructureBean

Overview Package Class Use Tree Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

29

msc.util
Class XMLBuilder
java.lang.Object
 msc.util.XMLBuilder

public class XMLBuilder
extends Object

The builder for building the XML representation of a data file step by step

Author:
Yi Zhu

Overview Package Class Use Tree Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Constructor Summary
XMLBuilder(String xmlURI)
 Constructs a new XMLBuilder, specifying the target output file

Method Summary
 void buildCloseLabel(LabelDataItem item, Integer rank)

 Build a close XML tag, which is "/" with a label, for the specified
LabelDataItem

 void buildComplexDataItem(NodeTree tree, Position pos,
Integer rank)
 Represent a complex type data item in XML representation

 void buildLabel(LabelDataItem item, Integer rank)
 Build a XML tag, which is a label, for the specified LabelDataItem

 void buildSimpleDataItem(Position pos, Integer rank)
 Represent a simple type data item in XML representation

 void close()
 Close the file output stream and releases any system resources

Methods inherited from class java.lang.Object

equals, getClass, hashCode, notify, notifyAll, toString, wait,

30

XMLBuilder

public XMLBuilder(String xmlURI)

Constructs a new XMLBuilder, specifying the target output file

Parameters:
xmlURI - the location and file name of the result XML representation output

buildCloseLabel

public void buildCloseLabel(LabelDataItem item,
 Integer rank)

Build a close XML tag, which is "/" with a label, for the specified
LabelDataItem

Parameters:
item - the LabelDataItem to be built
rank - its rank in the XML file

buildComplexDataItem

public void buildComplexDataItem(NodeTree tree,
 Position pos,
 Integer rank)

Represent a complex type data item in XML representation

Parameters:
tree - the sub-tree containing all child data elements of the complex
type data item to be represented
pos - the position of the complex type data item to be represented
rank - its rank in the XML file

buildLabel

wait, wait

Constructor Detail

Method Detail

31

public void buildLabel(LabelDataItem item,
 Integer rank)

Build a XML tag, which is a label, for the specified LabelDataItem

Parameters:
item - the LabelDataItem to be built
rank - its rank in the XML file

buildSimpleDataItem

public void buildSimpleDataItem(Position pos,
 Integer rank)

Represent a simple type data item in XML representation

Parameters:
pos - the position of the simple type data item to be represented
rank - its rank in the XML file

close

public void close()

Close the file output stream and releases any system resources

Overview Package Class Use Tree Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

32

